Rate Equations for Graphs

Vincent Danos¹ Tobias Heindel² Ricardo Honorato-Zimmer³ Sandro Stucki⁴

¹CNRS/ENS-PSL/INRIA, France ²TU Berlin, Germany ³CINV, Chile ⁴GU/Chalmers, Sweden

Virtual CMSB 2020 - Konstanz - 23 Sep 2020

sandro.stucki@gu.se @stuckintheory

UNIVERSITY OF GOTHENBURG

Question

What is the expected value $\mathbb{E}(F)$ of some observable *F* on a CTMC?

Photo: J Ligero & I Barrios 2013 (Wikipedia).

Question

What is the expected value $\mathbb{E}(F)$ of some observable *F* on a CTMC?

Example (reproduction)

 $2 \frac{k_{\alpha}}{2} \frac{k_{\alpha}}{2} 3 \frac{k_{\alpha}}{2}$

Question

What is the expected value $\mathbb{E}(F)$ of some observable *F* on a CTMC?

Example (reproduction)

 $2B \xrightarrow{k_{\alpha}} 3B$

Question

What is the expected value $\mathbb{E}(F)$ of some observable *F* on a CTMC?

Example (reproduction)

$$2B \xrightarrow{k_{\alpha}} 3B$$

The function [B] counts the number of occurrences of B.

$$\frac{d}{dt} \mathbb{E}[B] = k_{\alpha} \mathbb{E}[2B] = k_{\alpha} \mathbb{E}([B]([B] - 1))$$
 (meanfield)

Question

What is the expected value $\mathbb{E}(F)$ of some observable *F* on a CTMC?

Example (reproduction)

$$2B \xrightarrow{k_{\alpha}} 3B$$

The function [B] counts the number of occurrences of B.

Question

What is the expected value $\mathbb{E}(F)$ of some observable *F* on a CTMC?

Example (reproduction)

$$2B \xrightarrow{k_{\alpha}} 3B$$

The function [B] counts the number of occurrences of B.

$$\begin{split} & \frac{d}{dt} \, \mathbb{E}[B] = k_{\alpha} \, \mathbb{E}[2B] = k_{\alpha} \, \mathbb{E}([B]([B]-1)) & (\text{meanfield}) \\ & \simeq k_{\alpha} \, \mathbb{E}([B][B]) \simeq k_{\alpha} \, \mathbb{E}[B] \, \mathbb{E}[B] & (\text{approximation}) \\ & \frac{d}{dt} [B] \simeq k_{\alpha} [B]^2 & (\text{thermodynamic limit}) \end{split}$$

Reaction/rule

Observable

$$B := O$$

Reaction/rule

Observable

$$\circ \quad \circ \quad \underline{k_{\alpha}} \quad \circ \quad \circ \quad \circ$$

$$B := O$$

$$\frac{d}{dt}$$
 O = $\frac{d}{dt}[B] =$

Reaction/rule

Observable

$$\circ \quad \circ \quad \underline{k_{\alpha}} \quad \circ \quad \circ \quad \circ$$

$$B := O$$

$$\frac{d}{dt} \circ = -k_{\alpha} \circ \circ + \cdots$$
$$\frac{d}{dt}[B] = -k_{\alpha}[2B] + \cdots$$

Reaction/rule

Observable

$$\circ \quad \circ \quad \underline{k_{\alpha}} \quad \circ \quad \circ \quad \circ$$

$$B := O$$

$$\frac{d}{dt} \circ = -2k_{\alpha} \circ \circ + \cdots$$
$$\frac{d}{dt}[B] = -2k_{\alpha}[2B] + \cdots$$

Reaction/rule

Observable

$$\circ \quad \circ \quad \underline{k_{\alpha}} \quad \circ \quad \circ \quad B := \quad \bullet \quad B :$$

$$\frac{d}{dt} \circ = -2k_{\alpha} \circ \circ + k_{\alpha} \circ \circ + \cdots$$
$$\frac{d}{dt}[B] = -2k_{\alpha}[2B] + k_{\alpha}[2B] + \cdots$$

Reaction/rule

Observable

$$\circ \quad \circ \quad \underline{k_{\alpha}} \quad \circ \quad \circ \quad B := \quad \bullet \quad B :$$

$$\frac{d}{dt} \circ = -2k_{\alpha} \circ \circ + 2k_{\alpha} \circ \circ + \cdots$$
$$\frac{d}{dt}[B] = -2k_{\alpha}[2B] + 2k_{\alpha}[2B] + \cdots$$

Reaction/rule

Observable

$$\circ \circ \underline{k_{\alpha}} \circ \circ$$

$$B := O$$

$$\frac{d}{dt} \circ = -2k_{\alpha} \circ \circ + 3k_{\alpha} \circ \circ$$
$$\frac{d}{dt}[B] = -2k_{\alpha}[2B] + 3k_{\alpha}[2B]$$

Reaction/rule

Observable

$$\circ \quad \circ \quad \stackrel{k_{\alpha}}{-} \quad \circ \quad \circ$$

$$B := O$$

$$\frac{d}{dt}$$
 O = k_{α} O O

$$\frac{d}{dt}[B] = k_{\alpha}[2B]$$

Reaction/rule

Observable

$$O \quad O \xrightarrow{k_{\alpha}} O \quad O \quad B := O$$

$$\frac{d}{dt} \circ = k_{\alpha} \circ \circ \simeq k_{\alpha} \circ \circ$$
$$\frac{d}{dt}[B] = k_{\alpha}[2B] \simeq k_{\alpha}[B]^{2}$$

Rules

Observables

Rules

$$\circ$$
 \circ $\xrightarrow{k_{\beta}}$ \circ

Observables

$$B := 0$$
 $C := 0$ $S := 0$

$$\frac{d}{dt}$$
 O =

$$\frac{d}{dt}[B] =$$

Rules

Observables

$$B := O \qquad C := O \qquad S := C$$

$$\frac{d}{dt}$$
 \circ = k_{β} \circ \circ + ...

$$\frac{d}{dt}[B] = k_{\beta}[2B] + \cdots$$

Rules

$$\circ$$
 \circ $\xrightarrow{k_{\beta}}$ \circ

Observables

$$B := O \qquad C := O \qquad S := O \qquad S$$

$$\frac{d}{dt} \circ = k_{\beta} \circ \circ + k_{\gamma} \circ \circ$$
$$\frac{d}{dt}[B] = k_{\beta}[2B] + k_{\gamma}[C]$$

Rules

Observables

$$B := O \qquad C := O \qquad S := O \qquad S$$

Bunnies with families (cont.) Rule Observable \circ \circ

Bunnies with families (cont.)

 Rule
 Observable

$$\circ$$
 \circ
 \circ

$$\frac{d}{dt}$$
 $\mathbf{a}_{\mathbf{a}\mathbf{b}}\mathbf{e}^{\mathbf{a}\mathbf{b}} =$

$$\frac{d}{dt}[C] =$$

Bunnies with families (cont.)

 Rule
 Observable

$$\circ$$
 \circ
 \circ

Refinement

$$\frac{d}{dt}$$
 $\mathbf{o}_{\mathbf{v}\mathbf{o}^{\mathbf{v}}} =$

$$\frac{d}{dt}[C] =$$

$$\frac{d}{dt} \circ_{\lambda 0} e^{0} = -k_{\beta} \circ_{\lambda 0} e^{0} + \cdots$$
$$\frac{d}{dt} [C] = -k_{\beta} [C] + \cdots$$

0 0,000

$$\frac{d}{dt} \circ_{\mathbf{x} \mathbf{0}^{\mathbf{x}}} = -k_{\beta} \circ_{\mathbf{x} \mathbf{0}^{\mathbf{x}}} + \cdots$$
$$\frac{d}{dt} [C] = -k_{\beta} [C] + \cdots$$

Bunnies with families (cont.)

 Rule
 Observable

$$\circ$$
 \circ
 $\overset{k_{\beta}}{\longrightarrow}$
 \circ
 \circ

$$\frac{d}{dt} \circ_{\mathbf{v} \mathbf{v}} \circ = -k_{\beta} \circ_{\mathbf{v} \mathbf{v}} \circ -k_{\beta} \circ \circ_{\mathbf{v} \mathbf{v}} \circ + \cdots$$
$$\frac{d}{dt} [C] = -k_{\beta} [C] - k_{\beta} [F_0] + \cdots$$

Interlude: minimal gluings (overlaps)

Interlude: minimal gluings (overlaps)

The set of MGs grows quickly, even for small graphs.

1

RuleObservable \circ \circ \circ \sim \circ \circ cccc

$$\frac{d}{dt} \circ_{\mathbf{x}_{0} \mathbf{x}^{0}} = -k_{\beta} \circ_{\mathbf{x}_{0} \mathbf{x}^{0}} - k_{\beta} \circ \circ_{\mathbf{x}_{0} \mathbf{x}^{0}} + \cdots$$

$$\frac{d}{dt} [C] = -k_{\beta} [C] - k_{\beta} [F_{0}] + \cdots$$

$$\frac{d}{dt} \circ_{\mathbf{x}_{0} \mathbf{x}^{0}} = -k_{\beta} \circ_{\mathbf{x}_{0} \mathbf{x}^{0}} - k_{\beta} \circ \circ_{\mathbf{x}_{0} \mathbf{x}^{0}} + \cdots$$

$$\frac{d}{dt}[C] = -k_{\beta}[C] - k_{\beta}[F_{0}] + \cdots$$

RuleObservable \circ \circ \sim \circ \circ \sim \circ \circ

Refinement

$$\frac{d}{dt} \circ_{\mathbf{x}_{0}\mathbf{x}_{0}} = -k_{\beta} \circ_{\mathbf{x}_{0}\mathbf{x}_{0}} - k_{\beta} \circ_{\mathbf{x}_{0}\mathbf{x}_{0}} + k_{\beta} \circ_{\mathbf{x}_{0}\mathbf{x}_{0}} + \cdots$$

$$\frac{d}{dt}[C] = -k_{\beta}[C] - k_{\beta}[F_{0}] + k_{\beta}[C] + \cdots$$

Rule

Observable

$$\circ$$
 \circ k_{β} \circ \circ

$$C := O_{O} O$$

Refinement

$$\frac{d}{dt} \circ_{\mathbf{x}_0 \mathbf{z}} \circ = -k_\beta \circ \circ_{\mathbf{x}_0 \mathbf{z}} \circ + \cdots$$
$$\frac{d}{dt} [C] = -k_\beta [F_0] + \cdots$$

Rule Obs O k_{β} O C C C

Refinement

MFA/Rate equation

$$\frac{d}{dt} \circ_{\mathbf{x}_{0}\mathbf{x}^{0}} = -k_{\beta} \circ \circ_{\mathbf{x}_{0}\mathbf{x}^{0}} + \cdots$$
$$\frac{d}{dt}[C] = -k_{\beta}[F_{0}] + \cdots$$

Observable

Rule Observable \circ \circ

Refinement

$$\frac{d}{dt} \circ_{\mathbf{x}_{0} \mathbf{c}^{\mathbf{0}}} = -k_{\beta} \circ_{\mathbf{x}_{0} \mathbf{c}^{\mathbf{0}}} + k_{\beta} \circ_{\mathbf{x}_{0} \mathbf{c}^{\mathbf{0}}} + \cdots$$

$$\frac{d}{dt} [C] = -k_{\beta} [F_{0}] + k_{\beta} [F_{0}] + \cdots$$
Case 1: irrelevant MGs

Rule

Observable

$$C := O_{O}O$$

Refinement

$$\frac{d}{dt}$$
 $\circ_{*\circ}$ \bullet \bullet \bullet

$$\frac{d}{dt}[C] = \cdots$$

Rule

Observable

$$\frac{d}{dt}$$
 $\mathbf{a}_{\mathbf{a}_{\mathbf{a}}}$ $\mathbf{e}^{\mathbf{a}_{\mathbf{a}}}$ $\mathbf{e}^{\mathbf{a}_{\mathbf{a}}}$

$$\frac{d}{dt}[C] = \cdots$$

Rule

Observable

$$\circ$$
 \circ k_{β} \circ \circ

$$C := O_{O} O$$

Refinement

$$\frac{d}{dt} \circ_{\mathbf{a}} = \cdots$$

$$\frac{d}{dt}[C] = \cdots$$

Rule

Observable

$$\circ$$
 \circ k_{β} \circ \circ

$$C := 0$$

Refinement

$$\frac{d}{dt} \circ_{*\circ} = \cdots$$

$$\frac{d}{dt}[C] = \cdots$$

Rule

Observable

$$\circ$$
 \circ k_{β} \circ \circ

$$C := 0$$

Refinement

$$\frac{d}{dt} \circ_{*\circ} = \cdots$$

$$\frac{d}{dt}[C] = \cdots$$

Rule

Observable

$$\circ \circ \xrightarrow{k_{\beta}} \circ \circ \circ$$

$$C := O_{O}$$

$$\frac{d}{dt} \circ_{\mathbf{x}} \circ = \cdots$$

$$\frac{d}{dt}[C] = \cdots$$

Rule

Observable

 $C := O_{O}O^{O}$

$$\circ$$
 \circ k_{β} \circ \circ

0,000

$$\frac{d}{dt} \circ_{\mathbf{a}} = \cdots$$

$$\frac{d}{dt}[C] = \cdots$$

Rule

Observable

 $C := O_{O}O$

$$\circ$$
 \circ k_{β} \circ \circ

$$\circ$$
 \circ k_{β} \circ \circ

$$\frac{d}{dt} \circ = k_{\beta} \circ \circ + \cdots$$

$$\frac{d}{dt}[C] = k_{\beta}[2B] + \cdots$$

Rule

Observable

$$\circ$$
 \circ k_{β} \circ \circ \circ

$$C := O_{O}$$

Refinement

$$\circ$$
 \circ k_{β} \circ \circ \circ

$$\frac{d}{dt} \circ \circ t \circ = 2k_{\beta} \circ \circ + \cdots$$

$$\frac{d}{dt}[C] = 2k_{\beta}[2B] + \cdots$$

Rule

Observable

 $C := O_{O}$

$$a_{10}$$
 k_{γ} b_{10}

$$\frac{d}{dt} \circ {}_{\mathbf{a}_{\mathbf{a}}\mathbf{c}^{\mathbf{a}}} = 2k_{\beta} \circ \circ + \cdots$$

$$\frac{d}{dt}[C] = 2k_{\beta}[2B] + \cdots$$

Rule

Observable

$$C := O_{O}$$

Refinement

$$\sim$$
 \sim \sim \sim \sim

$$\frac{d}{dt} \circ_{\mathbf{x}_{0}\mathbf{x}^{0}} = 2k_{\beta} \circ \circ + k_{\gamma} \circ_{\mathbf{x}_{0}\mathbf{x}^{0}} + \cdots$$
$$\frac{d}{dt}[C] = 2k_{\beta}[2B] + k_{\gamma}[C] + \cdots$$

Rule

Observable

 $C := O_{AO}O$

$$\sim$$

$$\sim$$
 \sim \sim \sim \sim

MFA/Rate equation

$$\frac{d}{dt} \circ_{\mathbf{x}_{0}} = 2k_{\beta} \circ \circ + 2k_{\gamma} \circ_{\mathbf{x}_{0}} \circ$$
$$\frac{d}{dt}[C] = 2k_{\beta}[2B] + 2k_{\gamma}[C]$$

9

Rule

Observable

 $C := O_{\bullet O} O_{\bullet} O$

$$\sim$$

$$\sim$$
 \sim \sim \sim \sim

$$\frac{d}{dt} \circ_{\lambda 0} c^{\circ} \simeq 2k_{\beta} \circ \circ + 2k_{\gamma} \circ_{\lambda 0} c^{\circ}$$
$$\frac{d}{dt}[C] \simeq 2k_{\beta}[B]^{2} + 2k_{\gamma}[C]$$

Bunnies with families (cont.)

Rules

$$0 \quad 0 \xrightarrow{k_{\beta}} \quad 0 \quad 0$$

Observables

$$B := O \qquad C := O_{AO} O$$

Bunnies with families (cont.)

Rules $O O \underline{k_{\beta}} O_{0}O$ Observables $B := O C := O_{0}O$

$$S := \mathcal{Q}$$

Bunnies with families (cont.)

$$\frac{d}{dt}[B] \simeq k_{\beta}[B]^2 + k_{\gamma}[C] \qquad \qquad \frac{d}{dt}[F_1] = 0$$

$$\frac{d}{dt}[C] \simeq 2k_{\beta}[B]^2 + 2k_{\gamma}[C] \qquad \qquad \frac{d}{dt}[F_2] = 0$$

$$\frac{d}{dt}[S] = 4(k_{\beta} + k_{\gamma})[C] + 4k_{\gamma}[S] + 4k_{\gamma}[F_1] + 8k_{\gamma}[F_2]$$

Two-legged DNA walker

 $V = \frac{1}{2} \left(k_{F,E} \mathbb{E}[G_1] + k_{F,C} \mathbb{E}[G_2] - k_{B,E} \mathbb{E}[G_3] - k_{B,C} \mathbb{E}[G_2] \right)$

Minimal gluings

$$\frac{d}{dt} \bigotimes_{\bullet \bullet \bullet} = k_{F,E} \bigotimes_{\bullet \bullet} -k_{B,C} \bigotimes_{\bullet \bullet \bullet} -k_{F,C} \bigotimes_{\bullet \bullet \bullet} +k_{B,E} \bigotimes_{\bullet \bullet \bullet} +k_{B,E}$$

$$\frac{d}{dt} \begin{array}{c} \overset{\bullet}{\underset{\bullet\bullet\bullet}} \\ \overset{\bullet}{\underset{\bullet\bullet}} \end{array} = k_{F,E} \begin{array}{c} \overset{\bullet}{\underset{\bullet\bullet}} \\ \overset{\bullet}{\underset{\bullet\bullet}} \end{array} -k_{B,C} \begin{array}{c} \overset{\bullet}{\underset{\bullet\bullet}} \\ \overset{\bullet}{\underset{\bullet\bullet}} \end{array} -k_{F,C} \begin{array}{c} \overset{\bullet}{\underset{\bullet\bullet}} \\ \overset{\bullet}{\underset{\bullet\bullet}} \\ \overset{\bullet}{\underset{\bullet\bullet}} \end{array} +k_{B,E} \begin{array}{c} \overset{\bullet}{\underset{\bullet\bullet}} \\ \overset{\bullet}{\underset{\bullet\bullet}} \end{array}$$

$$\frac{d}{dt} \bigotimes_{\bullet \bullet \bullet}^{\bullet} = k_{F,E} \bigotimes_{\bullet \bullet \bullet}^{\bullet} -k_{B,C} \bigotimes_{\bullet \bullet \bullet}^{\bullet} -k_{F,C} \bigotimes_{\bullet \bullet \bullet}^{\bullet} +k_{B,E} \bigotimes_{\bullet \bullet \bullet}^{\bullet}$$

$$\frac{d}{dt} \bigotimes_{\bullet \bullet \bullet}^{\bullet} = -k_{F,E} \bigotimes_{\bullet \bullet \bullet}^{\bullet} +k_{B,C} \bigotimes_{\bullet \bullet \bullet}^{\bullet} +k_{F,C} \bigotimes_{\bullet \bullet \bullet \bullet}^{\bullet} -\dots$$

$$\frac{d}{dt} \bigotimes_{\bullet \bullet \bullet \bullet}^{\bullet} = k_{F,E} \bigotimes_{\bullet \bullet \bullet \bullet}^{\bullet} -k_{B,C} \bigotimes_{\bullet \bullet \bullet \bullet}^{\bullet} -k_{F,C} \bigotimes_{\bullet \bullet \bullet \bullet}^{\bullet} +\dots$$

$$\frac{d}{dt} \bigotimes_{\mathbf{b}\mathbf{o}} = k_{F,E} \bigotimes_{\mathbf{b}\mathbf{o}} -k_{B,C} \bigotimes_{\mathbf{b}\mathbf{o}} -k_{F,C} \bigotimes_{\mathbf{b}\mathbf{o}} +k_{B,E} \bigotimes_{\mathbf{b}\mathbf{o}}^{\mathbf{b}}$$

$$\frac{d}{dt} \bigotimes_{\mathbf{b}\mathbf{o}} = -k_{F,E} \bigotimes_{\mathbf{b}\mathbf{o}} +k_{B,C} \bigotimes_{\mathbf{b}\mathbf{o}} +k_{F,C} \bigotimes_{\mathbf{b}\mathbf{o}\mathbf{o}} -\dots$$

$$\frac{d}{dt} \bigotimes_{\mathbf{b}\mathbf{o}\mathbf{o}} = k_{F,E} \bigotimes_{\mathbf{b}\mathbf{o}\mathbf{o}} -k_{B,C} \bigotimes_{\mathbf{b}\mathbf{o}\mathbf{o}} -k_{F,C} \bigotimes_{\mathbf{b}\mathbf{o}\mathbf{o}} +\dots$$

$$\frac{d}{dt} \bigotimes_{\mathbf{b}\mathbf{o}\mathbf{o}\mathbf{o}} = -k_{F,E} \bigotimes_{\mathbf{b}\mathbf{o}\mathbf{o}\mathbf{o}} +k_{B,C} \bigotimes_{\mathbf{b}\mathbf{o}\mathbf{o}\mathbf{o}} +k_{F,C} \bigotimes_{\mathbf{b}\mathbf{o}\mathbf{o}\mathbf{o}} +\dots$$

$$\frac{d}{dt} \stackrel{A}{\otimes \infty} = k_{F,E} \stackrel{A}{\otimes} -k_{B,C} \stackrel{A}{\otimes} -k_{F,C} \stackrel{A}{\otimes} +k_{B,E} \stackrel{A}{\otimes}$$

$$\frac{d}{dt} \stackrel{A}{\otimes} = -k_{F,E} \stackrel{A}{\otimes} +k_{B,C} \stackrel{A}{\otimes} +k_{F,C} \stackrel{A}{\otimes} -\dots$$

$$\frac{d}{dt} \stackrel{A}{\otimes} = -k_{F,E} \stackrel{A}{\otimes} -k_{F,C} \stackrel{A}{\otimes} -k_{F,C} \stackrel{A}{\otimes} +\dots$$

$$\frac{d}{dt} \stackrel{A}{\otimes} = -k_{F,E} \stackrel{A}{\otimes} +k_{B,C} \stackrel{A}{\otimes} +k_{F,C} \stackrel{A}{\otimes} -\dots$$

$$\frac{d}{dt} \stackrel{A}{\otimes} = -k_{F,E} \stackrel{A}{\otimes} +k_{B,C} \stackrel{A}{\otimes} +k_{F,C} \stackrel{A}{\otimes} -\dots$$

$$\frac{d}{dt} \stackrel{A}{\otimes} = \dots$$

$$\frac{d}{dt} \overset{2}{\$} = k_{F,E} \overset{2}{\$} -k_{B,C} \overset{2}{\$} -k_{F,C} \overset{2}{\$} +k_{B,E} \overset{2}{\$}$$
$$\frac{d}{dt} \overset{2}{\$} = -k_{F,E} \overset{2}{\$} +k_{B,C} \overset{2}{\$} +k_{F,C} \overset{2}{\$} -k_{B,E} \overset{2}{\$}$$

$$\frac{d}{dt} \overset{2}{\rest} = k_{F,E} \overset{2}{\rest} -k_{B,C} \overset{2}{\rest} -k_{F,C} \overset{2}{\rest} +k_{B,E} \overset{2}{\rest}$$
$$\frac{d}{dt} \overset{2}{\rest} = -k_{F,E} \overset{2}{\rest} +k_{B,C} \overset{2}{\rest} +k_{F,C} \overset{2}{\rest} -k_{B,E} \overset{2}{\rest}$$

Steady state: $(k_{F,E} + k_{B,E}) \mathbb{E}[G_0] = (k_{F,C} + k_{B,C}) \mathbb{E}[G_2]$

$$\begin{cases} 8 \\ \bullet \to \bullet \end{array} = \begin{cases} 8 \\ \bullet \to \bullet \end{array} = \begin{cases} 8 \\ \bullet \to \bullet \end{array} \end{cases}$$

$$\frac{d}{dt} \overset{2}{\$} = k_{F,E} \overset{2}{\$} -k_{B,C} \overset{2}{\$} -k_{F,C} \overset{2}{\$} +k_{B,E} \overset{2}{\$}$$
$$\frac{d}{dt} \overset{2}{\$} = -k_{F,E} \overset{2}{\$} +k_{B,C} \overset{2}{\$} +k_{F,C} \overset{2}{\$} -k_{B,E} \overset{2}{\$}$$

Steady state: $(k_{F,E} + k_{B,E}) \mathbb{E}[G_0] = (k_{F,C} + k_{B,C}) \mathbb{E}[G_2] \mathbb{E}[G_0] + \mathbb{E}[G_2] = 1$

$$\frac{d}{dt} \overset{\bullet}{\mathfrak{G}} = k_{F,E} \overset{\bullet}{\mathfrak{G}} -k_{B,C} \overset{\bullet}{\mathfrak{G}} -k_{F,C} \overset{\bullet}{\mathfrak{G}} +k_{B,E} \overset{\bullet}{\mathfrak{G}}$$
$$\frac{d}{dt} \overset{\bullet}{\mathfrak{G}} = -k_{F,E} \overset{\bullet}{\mathfrak{G}} +k_{B,C} \overset{\bullet}{\mathfrak{G}} +k_{F,C} \overset{\bullet}{\mathfrak{G}} -k_{B,E} \overset{\bullet}{\mathfrak{G}}$$

Steady state: $(k_{F,E} + k_{B,E}) \mathbb{E}[G_0] = (k_{F,C} + k_{B,C}) \mathbb{E}[G_2] \mathbb{E}[G_0] + \mathbb{E}[G_2] = 1$

$$V = \frac{1}{2} ((k_{F,E} - k_{B,E}) \mathbb{E}[G_0] + (k_{F,C} - k_{B,C}) \mathbb{E}[G_2])$$

=
$$\frac{(k_{F,C} + k_{B,C})(k_{F,E} - k_{B,E}) + (k_{F,E} + k_{B,E})(k_{F,C} - k_{B,C})}{2(k_{F,E} + k_{B,E} + k_{F,C} + k_{B,C})}$$

Full details...

... are in the paper.

 $\frac{d}{dt} \mathbb{E}_p[F] = -\sum_{\alpha \in \mathcal{R}} k(\alpha) \sum_{\mu \in \alpha *_L F} \mathbb{E}_p[\hat{\mu}] + \sum_{\alpha \in \mathcal{R}} k(\alpha) \sum_{\mu \in \alpha *_R F} \mathbb{E}_p[\hat{\alpha}^{\dagger}(\mu_1)].$

Fragger

Image:	••	Fragger	×	+									
Frager Spectra s	\rightarrow Gr	ŵ 🔍	Attps://rhz.github.io/fra	gger/?mne=2&m=bimotor			80	∞ … ⊠ ☆	👱 III\ C	0 0	© 1	• 🖪	ú
The bigging generating g						Fragger		ment sei	nantic	s			
Networks/sec operand sec operand sec Sectors date Spectand sector Spectand sector Spectand sector Spectand date Spectand sector Spectand sector Spectand sector Spec			This Scalu ja web spp equations that descrit observables. For more	generates systems of differential e the average behaviour of graph information check the following papers.		graph := { node edge := node -> { node := nome(1)ab Domrybunke, b snowfake, votermod	Sym edge)("1" "," label])7 mode e1]]7 imoloc, preferential el.	tax))× attachment, irreverable	marka, Koch				
behad ubin ógé hand sök atin hög dirgi dir dir dir dir dir dir dir dir dir di					Ru	les	+	-					
With effeld dig dig die die besch besch with effeld dig die die die besch besch 000 With effeld dig die one besch with effeld dig die die besch besch with effeld dig die die besch besch with effeld dig die die besch besch				left-hand side			right-hand side		rate				
(k) 및 4 (k) 및 4 (k) 및 4 (k) = (k)			b[b], c1[c], c2[c], c1->c2	, b->c1, b->c1	+	b[b], c1[c], c2[c], c1->c2	2, b->c1, b->c2		kFE				
Nější cříjší cříjši cříjši cříjší cříjší cříjší cříjší cříjší cříjší cříjší cříjší			b]b], c1[c], c2[c], c1->ci	, b->c1, b->c2	→	b[b], c1[c], c2[c], c1->c	2, b->c1, b->c1		kBC				
1000_0 ctrig_ ctrig_ctrig			b]b], c1[c], c2[c], c1->c5	, b->c1, b->c2	+	b[b], c1[c], c2[c], c1->c	2, b->c2, b->c2		kFC				
nome graph magnetion - 00 Mpl, dpl, b = 0, b = 0 graph magnetion 01 Mpl, dpl, dpl, d = 0, d = 0 -			b]b], c1[c], c2[c], c1->c	, b->c2, b->c2	+	b[b], c1[c], c2[c], c1->c	2, boe1, boe2		kBE				
Control Spath Represent Cot Spath Represent Cot Spath Represent					Obser	vables	+	-					
00 k(k), d(s), b>c 02 k(k), d(s), d(s), c, sort, b>ct			name			graph expression							
02 b(b), t1(c), c2(c), t1>c2, t>c4			GD	$b(b ,c(c),b{\rightarrow}c,b{\rightarrow}c$									
			G2	b(b), c1(c), c2(c), c1->c2, b->c1, b->c	2								

Web app https://rhz.github.io/fragger/ Source code https://github.com/rhz/graph-rewriting/

Related and future work

Site graph rewriting Differential semantics of the Kappa language.

- Derived via abstract interpretation of ground CRN ("fragmentation").
- [Feret et al., 2009, Danos et al., 2010, Harmer et al., 2010].

Moment semantics Generalization to other graph-like structures.

- Direct derivation of MFAs (no ground CRN) incl. higher moments.
- Preliminary: support for negative application conditions (NACs).
- Open problems: truncation; approximate model reduction.
- [Danos et al., 2014, Danos et al., 2015a, Danos et al., 2015b].

Rule algebra Alternative approach leveraging algebraic structure of rules.

- Developed independently by Behr and others.
- Powerful, very general approach based on representation theory.
- Supports irreversible systems and NACs.
- Future work: better understand the relation between the two approaches.
- [Behr et al., 2016, Behr and Krivine, 2020, Behr et al., 2020a, Behr et al., 2020b].

Thank you!

Coauthors

- Vincent Danos, CNRS & ENS-PSL
- Tobias Heindel, TU Berlin
- Ricardo Honorato-Zimmer, CINV

Checkout the Fragger web-app!

https://rhz.github.io/fragger/ https://github.com/rhz/graph-rewriting/

Backup slides

For Petri nets:

$$\frac{d}{dt} \mathbb{E}([A]) = -\sum_{\alpha \in \mathcal{R}} k(\alpha) \,\rho_{\alpha}(A) \prod_{(u,n) \in \rho_{\alpha}} \mathbb{E}(u)^{n} \\ + \sum_{\alpha \in \mathcal{R}} k(\alpha) \,\gamma_{\alpha}(A) \prod_{(u,n) \in \gamma_{\alpha}} \mathbb{E}(u)^{n}$$

For Petri nets:

$$\frac{d}{dt} \mathbb{E}([A]) = -\sum_{\alpha \in \mathcal{R}} k(\alpha) \,\rho_{\alpha}(A) \prod_{(u,n) \in \rho_{\alpha}} \mathbb{E}(u)^{n} \\ + \sum_{\alpha \in \mathcal{R}} k(\alpha) \,\gamma_{\alpha}(A) \prod_{(u,n) \in \gamma_{\alpha}} \mathbb{E}(u)^{n}$$

More generally,

- *S* a countable set (state),
- \mathbb{R}^{S} probabilities and observables, topology),
- $Q: \mathbb{R}^{S} \to \mathbb{R}^{S'}$ a continuous linear map (transition matrix).

$$\frac{d}{dt}p^{T} = p^{T}Q$$
$$\frac{d}{dt}\mathbb{E}_{p}(f) = \frac{d}{dt}p^{T}f = p^{T}Qf = \mathbb{E}_{p}(Qf)$$
$$(Qf)(x) := \sum_{y} q_{xy}(f(y) - f(x))$$

Suppose

- \mathcal{A} a linear subspace of \mathbb{R}^{S} with basis \mathcal{B} , and
- \mathcal{B} is jump-closed: $Q\mathcal{B} \subseteq \mathcal{A}$.

$$Qg = \sum_{h \in \mathcal{B}} \alpha_{g,h} h$$

$$\frac{d}{dt} \mathbb{E}_p(g) = \sum_{h \in \mathcal{B}} \alpha_{g,h} \mathbb{E}_p(h)$$
• $\mathcal{B}_0 \subseteq \mathcal{B}$ such that $\operatorname{poly}(\mathcal{B}_0) = \mathcal{A}$

$$h = \sum_{\phi \in \mathcal{B}_0} \beta_{h,\phi} \phi$$

$$\frac{d}{dt} \mathbb{E}_p(g) \simeq \sum_{h \in \mathcal{B}} \alpha_{g,h} \sum_{\phi \in \mathcal{B}_0} \beta_{h,\phi} \prod_{u \in \phi} \mathbb{E}_p(u)$$

So, in general:

$$\frac{d}{dt} \mathbb{E}_p(g) = \sum_{h \in \mathcal{B}} \alpha_{g,h} \sum_{\phi \in \mathcal{B}_0} \beta_{h,\phi} \prod_{u \in \phi} \mathbb{E}_p(u)$$

For Petri nets:

$$\frac{d}{dt} \mathbb{E}([A]) = -\sum_{\alpha \in \mathcal{R}} k(\alpha) \,\rho_{\alpha}(A) \prod_{(u,n) \in \rho_{\alpha}} \mathbb{E}(u)^{n} \\ + \sum_{\alpha \in \mathcal{R}} k(\alpha) \,\gamma_{\alpha}(A) \prod_{(u,n) \in \gamma_{\alpha}} \mathbb{E}(u)^{n}$$

• \mathcal{B}_0 is the set of species.
Rate equations for graphs

• \mathcal{B}_0 is the set of connected graphs

Behr, N., Danos, V., and Garnier, I. (2016).

Stochastic mechanics of graph rewriting. In Proc. 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2016), New York, NY, USA, page 46–55. ACM.

Behr, N., Danos, V., and Garnier, I. (2020a). Combinatorial conversion and moment bisimulation for stochastic rewriting systems.

Logical Methods in Computer Science, 16.

Behr, N. and Krivine, J. (2020).

Rewriting theory for the life sciences: A unifying framework for CTMC semantics.

In Gadducci, F. and Kehrer, T., editors, *Proc. Graph Transformation, 13th International Conference, (ICGT 2020), Bergen, Norway*, volume 12150 of *LNCS*. Springer.

Behr, N., Saadat, M. G., and Heckel, R. (2020b). Commutators for stochastic rewriting systems: Theory and implementation in Z3. CoRR arXiv:2003.11010.

Danos, V., Feret, J., Fontana, W., Harmer, R., and Krivine, J. (2010). Abstracting the differential semantics of rule-based models: exact and automated model reduction.

In Jouannaud, J.-P., editor, *Proc. 25th Annual IEEE Symposium on Logic in Computer Science (LICS 2010), Edinburgh, Scotland, UK*, volume 0, pages 362–381. IEEE Computer Society.

- Danos, V., Heindel, T., Honorato-Zimmer, R., and Stucki, S. (2014).
 Approximations for stochastic graph rewriting.
 In Merz, S. and Pang, J., editors, *Proc. Formal Methods and Software Engineering – 16th International Conference on Formal Engineering Methods* (*ICFEM 2014*), *Luxembourg*, *Luxembourg*, volume 8829 of *LNCS*, pages 1–10. Springer.
- Danos, V., Heindel, T., Honorato-Zimmer, R., and Stucki, S. (2015a). Computing approximations for graph transformation systems.

In Hildebrandt, T. and Miculan, M., editors, 2nd International Workshop on Meta Models for Process Languages (MeMo 2015), Grenoble, France. Pre-proceedings, pages 33–43. Electronic version available at http: //users.dimi.uniud.it/~marino.miculan/Papers/MeMo15-preproc.pdf.

- Danos, V., Heindel, T., Honorato-Zimmer, R., and Stucki, S. (2015b).
 Moment semantics for reversible rule-based systems.
 In Krivine, J. and Stefani, J., editors, *Proc. Reversible Computation, 7th International Conference (RC 2015), Grenoble, France*, volume 9138 of *LNCS*, pages 3–26. Springer.
- Feret, J., Danos, V., Krivine, J., Harmer, R., and Fontana, W. (2009).
 Internal coarse-graining of molecular systems.
 Proceedings of the National Academy of Sciences, 106(16):6453–6458.
- Harmer, R., Danos, V., Feret, J., Krivine, J., and Fontana, W. (2010). Intrinsic information carriers in combinatorial dynamical systems. *Chaos*, 20(3):037108–1–16.

Except where otherwise noted, this work is licensed under

http://creativecommons.org/licenses/by/3.0/