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® \W33-hyperproperty
, , , same;(m, 7) A same; (7', 7') A
v; = VYr¥r'.3r.3r" —~same(m, 7') — , ,
almost;(7,7") A = output(r, 7’)
e Challenges:

* Not black-box monitorable.
* Undecidable.
¢ Defined over arbitrary domains/datatypes.

Yet, we have a monitor...
what'’s going on here?
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Monitoring LTL
ps == == o =00=

¢ Observation: the world today at 10am

ulozoooo

e Update: the world at 11am
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vs Is there always coffee? up — ?, un — X
¢ Is there eventually coffee? uyp — v, un — v
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Monitoring LTL
ps == == o =00=

Observation: the world today at 10am

ulozoooo

Update: the world at 11am

ullzooooo

Is there always coffee? Uy — ?, upp — X
Is there eventually coffee? uyp — v, un — v
Is there always eventually coffee? w9 — ?, uyp — ?
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Monitoring LTL

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), at runtime.

6/26



Monitoring LTL

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation u.

6/26



Monitoring LTL

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation u.

Definition
A finite observation u permanently satisfies (resp. violates) ¢, if every infinite extension of u satisfies

(resp. violates) ¢:
ulE" @ iff forallte X¥suchthatu <t tkE ¢

ulE" ¢ iff forallt € ¥ suchthatu <t t}= ¢

6/26



Monitoring LTL
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violated (X), or neither (?), given a finite observation u.

Definition
A finite observation u permanently satisfies (resp. violates) ¢, if every infinite extension of u satisfies

(resp. violates) ¢:
ulE" @ iff forallte X¥suchthatu <t tkE ¢

ulE" ¢ iff forallt € ¥ suchthatu <t t}= ¢

ullzooooo
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Monitors for LTL

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation u.

A monitor for a property ¢ is a computable function M, : ¥* — {v/, X, ?} that
decides a verdict for ¢ given a finite u.

The monitor M,, is sound if
ulkEt e it My(u)=7, ukE’e it My(u) =X
The monitor M, is complete if

My(u)=vitulE ¢, Myu)=XifulE"p, My(u)="2olw.

Fact: every LTL formula has a sound and complete monitor.
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Monitorability of LTL formulas

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation u.

Ui b&s Pr Ui F’év Pr
Observation: u F=° ¢, and u =¥ ¢, for any u.

There’s no point in monitoring ¢, !

Definition (Pnueli & Zaks 2006)

A formula ¢ is (semantically) monitorable if every observation u has an
extension v = u, such that either v |=° p or v =7 .
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LTL — Summary

trace/hyper

¢ Properties defined over individual traces.
= Properties describe sets of traces.
e Sound and complete monitors can be constructed for any
formula.
¢ Not every formula is monitorable. For example,
® safety and liveness properties are monitorable,
® recurrence properties (J<) are not.
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¢ Properties defined over individual traces.
= Properties describe sets of traces.

e Sound and complete monitors can be constructed for any
formula.
¢ Not every formula is monitorable. For example,

® safety and liveness properties are monitorable,
® recurrence properties (J<) are not.
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[9] A.Pnueliand A. Zaks. PSL Model Checking and Run-time Verification via Testers., FM’06,
Springer, 2006.
[5] Y. Falcone, J-C. Fernandez, and L. Mounier. What can you verify and enforce at runtime?,
STTT 14(3), 2012.
[8] K. Havelund and D. Peled. Runtime Verification: From Propositional to First-Order Temporal
Logic. RV’'18, Springer, 2018.
. and many more!
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Hyperproperties — HyperlLTL
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Monitoring HyperLTL

oy =V NT.O(=07 = =7) g =V 3.0 > =)

e Observation: the world today at 10am
Uy = {====}

e Update: the world at 11am

U = {&eeee ; eees, et}

o, |s there always coffee everywhere at the same time? U, g — ?, U;1n — X
o, s there always coffee somewhere? Upg — ?, U1 — ?
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Monitoring HyperLTL

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation U.
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Definition
A finite observation U € Pyp(X*) permanently satisfies (resp. violates) ¢, if every infinite extension of
U satisfies (resp. violates) ¢:

UE ¢ iff forallT e P(X¥)suchthatU<T, TE ¢
UE"¢ iff forallT € P(Z)suchthatU < T, T [~ ¢

Uy ={===== ; cees, o)

Uy [ Y ¥ O(=r = =) U & Vr3r0(-r = =)
Uqq ‘:U VrVT.O(=r — =7) Un Fév Vo IrO(er = =)

12/26



Monitorability of HyperLTL formulas
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Monitorability of HyperLTL formulas

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation U.

Un = {===m——e, !

e =V 3r.O( o = =) U1 q U Y ¢

Observation: U ~° ¢, and U =Y ¢, for any U.

There’s no point in monitoring v, !

Definition (Agrawal & Bonakdarpour 2016)

A formula ¢ is (semantically) monitorable if every observation U has an
extension V = U, such that V =° o or V =7 ¢.
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HyperLTL — Summary
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* Properties defined over sets of traces.
= Properties describe sets of sets of traces.
e Sound and complete monitors can be constructed for some
formulas.
* For example, for formulas without quantifier alternations.
e But what about formulas with alternations?
* Most formulas are not monitorable.
® For example, V™3 -properties are not!
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e Properties defined over sets of traces. ) 7
= Properties describe sets of sets of traces. o {
e Sound and complete monitors can be constructed for some | | blackgray
formulas.
* For example, for formulas without quantifier alternations.
e But what about formulas with alternations?
* Most formulas are not monitorable.
® For example, V™3 -properties are not!

[1] S. Agrawal and B. Bonakdarpour. Runtime Verification of k-Safety Hyperproperties in
HyperLTL. CSF’16, IEEE CS Press, 2016.

[8] K. Havelund and D. Peled. Runtime Verification: From Propositional to First-Order Temporal
Logic. RV’'18, Springer, 2018.

[7] C. Hahn. Algorithms for Monitoring Hyperproperties. RV’'19, Springer, 2019.
14/26



Gray-box monitoring (of hyperproperties)

trace/hyper

black/gray

computability

14/26



Why is , not monitorable?

Theorem
Letp, =Vn.3r.0(  » = =,). ThenU ~° ¢, and U [£° o, for all U € Pgp(X*).

15/26



Why is , not monitorable?

Theorem
Let p, =Vrn.3r.0( » —» =7). Then U [£° ¢, and U ° ¢, for all U € Pyp(Z).

Proof.
U e, U=<X3X¥ and X¥ = ¢, because = == ... ¢ ¥¥;

15/26



Why is , not monitorable?

Theorem
Let p, =Vrn.3r.0( » —» =7). Then U [£° ¢, and U ° ¢, for all U € Pyp(Z).

Proof.
U e, U=<X3X¥ and X¥ = ¢, because = == ... ¢ ¥¥;
U ¢, defineTasT={te X’ |w=u .-« foru e U}

then U <X T and T }£ ¢,. O

15/26



Why is , not monitorable?
Theorem

Let p, =Vrn.3r.0( » —» =7). Then U [£° ¢, and U ° ¢, for all U € Pyp(Z).

Proof.
UK @, U=X and ¢ |= ¢, because === ... ¢ ¥,
U ¢, defineTasT={te X’ |w=u .-« foru e U}

then U <X T and T }£ ¢,. ]

This theorem can be generalized to all formulas ¢ = Vr.37.0P(w, 7) where P is
® abinary (non-temporal) predicate,
® serial,
e non-reflexive.

15/26



Why is , not monitorable?

Theorem
Let p, =Vrn.3r.0( » —» =7). Then U [£° ¢, and U ° ¢, for all U € Pyp(Z).

Proof.
UK @, U=X and ¢ |= ¢, because === ... ¢ ¥,
U ¢, defineTasT={te X’ |w=u .-« foru e U}

then U <X T and T }£ ¢,. ]

This theorem can be generalized to all formulas ¢ = Vr.37.0P(w, 7) where P is
® abinary (non-temporal) predicate,
® serial,
e non-reflexive.

OK, but let’s have a closer look at this proof. ..
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Why is ¢, not monitorable?
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Why is , not monitorable?
Theorem
Letp, =Vn.3r.0(= » = =;). ThenU £° v, and U £° ¢, for all U € P (X*).

Proof.
U p, U=%Y and 3 = ¢, because = = = ... € ¥¢¥;

This step is somewhat dubious.
¢ Realistic systems don't realize every possible trace.
¢ There is only a finite number of coffee dispensers in the world (sadly).
When monitoring hyperproperties, wed like to take into account

some information about the system
(gray-box monitoring).
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Gray-box monitoring of HyperLTL properties
Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation U.

Definition

A finite observation U € Pyr(X*) permanently satisfies (resp. violates) ¢,
if every infinite extension of U satisfies (resp. violates) :

UE e iff forallTeP(S¥)suchthatU < T, TE ¢
Uk iff forallT e P(X*)suchthatU < T, T [~ ¢
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Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation U of a system S.

Definition
Given a set of system behaviors S C P(X*),

a finite observation U € Py,(X*) permanently satisfies (resp. violates) ¢,
if every infinite extension of U in S satisfies (resp. violates) ¢:

Uks e iff forallT e SsuchthatU <T,T | ¢
UkEs e iff forallTe SsuchthatU < T, T [~ ¢

17/26



Gray-box monitoring of HyperLTL properties

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation U of a system S.

Definition
Given a set of system behaviors S C P(X*),

a finite observation U € Py,(X*) permanently satisfies (resp. violates) ¢,
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Gray-box monitoring in general

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation O of a system S.

Definition
Given a set of system behaviors S C B,

a finite observation O € O permanently satisfies (resp. violates) ¢,
if every infinite extension of O in S satisfies (resp. violates) ¢:

OEs ¢y iff forallBe SsuchthatO <B,BE ¢
O 5 ¢ iff forallBe Ssuchthat O < B, B [~ ¢
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Gray-box monitoring in general

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation O of a system S.

Definition
Given a set of system behaviors S C B,

a finite observation O € O permanently satisfies (resp. violates) ¢,
if every infinite extension of O in S satisfies (resp. violates) ¢:

OEs ¢y iff forallBe SsuchthatO <B,BE ¢
O 5 ¢ iff forallBe Ssuchthat O < B, B [~ ¢

A formula ¢ is semantically gray-box monitorable for a system S if every
observation O has an extension P = O in S, such that P =% ¢ or P =% .
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Gray-box monitors for V"3 -properties

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation O of a system S.
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A monitor for a property ¢ and a system S is a computable function
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Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation O of a system S.

A monitor for a property ¢ and a system S is a computable function
M,s: O — {/,X,?} that decides a verdict for ¢ given a finite O in S.

Assuming ¢ = Vr.37.¢(m, 7), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T > U of a given U permanently violate .
Example: ¢, = Vr.3r.0( 7 — =) S={TeP(X¥)||T| =3}

Negate ¢,: —p, = Ir.~Ir.0( 7 — =) instantiate solve

I -} s {m— - m——}
{&See, ) S S

)
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Gray-box monitoring — Summary

® Properties defined over observations (e.g. traces or sets of
traces).
= Properties describe sets of observations.
e Sound and complete monitors can be constructed for some
formulas.
® For example, for formulas without quantifier alternations (as
for black-box).
e But also for V3 -formulas when S imposes enough
constraints.
* Monitorability of formulas depends on set of valid system
behaviors S.
e For example, V*3*-properties are monitorable for some
choices of S.
* We will see a more interesting example later. ..

trace/hyper

" black/gray

20/26



Undecidable hyperproperties

trace/hyper

computability

black/gray

20/26



Monitorability is not existence of monitors

A formula ¢ is semantically gray-box monitorable for a system S if every
observation O has an extension P = O in S, such that P =% ¢ or P =% ¢.
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Monitorability is not existence of monitors

A formula ¢ is semantically gray-box monitorable for a system S if every
observation O has an extension P = O in S, such that P =% ¢ or P =% ¢.

A monitor for a property ¢ and a system S is a computable function
M, s: O{/, X, ?} that decides a verdict for ¢ given a finite u.

Observation: Monitorability of ¢ in S does not guarantee the existence of a sound
and complete monitor M, s.

Example: Let T be some Turing machine.
S ={teX¥|t; = the state of T after i steps}, ¢ = Ohalt.

Because T is deterministic, either u |=5% ¢ or u |=% ¢, for any u in S.
= ( is monitorable in S;
= there is a sound monitor M, s that only answers v/ or ?!
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Case study: distributed data minimality

trace/hyper

computability

black/gray
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Non-monitorable examples
Storage limitation (Article 5): Personal data shall be [...]

adequate relevant, and limited to what Is necessary In relation to the purposes for
which they are processed (data minimization) [...]

Data minimization (attempt at formalization)
collect (data,dataid,dsid) IMPLIES EVENTUALLY use(data, dataid, dsid)

But MFOTL semantics requires collected data used in EVERY run of the system
— Not finitely falsifiable (liveness) and Interpretation s also oo sirong
— Example: when booking a long-haul flight, customers provide emergency contact

for an account. In majority of cases, data is collected, not used, and deleted

Better would be a CTL formulation (although not monitorable on a trace)
collect (data, dataids, dsid) IMPLIES EXISTS EVENTUALLY use(data, datald, dsid)

Slide by David Basin, Can we Verify GDPR Compliance?, RV’19 keynote.
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Case study: distributed data minimality

¢ Distributed data minimality (DDM)
® privacy property (GDPR)
® generalization of data minimality to a multi-input setting
® \W33-hyperproperty

0; = Vr.vr' 3Ir 3. —same(m, 7)) — <

same;(m, ) A same; (7', 7') A
almost; (7, 7") A = output(r, 1)
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® generalization of data minimality to a multi-input setting
® Yw33-hyperproperty
. , /\ X /’ / /\
0; = Vr.vr' 3Ir 3. —same(m, 7)) — same;( T,) samei(r’, ) ,
almost; (7, 7") A ~output(r, 7')
e Challenges:

* Not black-box monitorable.
¢ Undecidable.
* Defined over arbitrary domains/datatypes.

Yet, we have a monitor. ..
here’s how. ..
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Distributed data minimality

Definition (Antignac, Sands & Schneider, 2017)

A function f is distributed data-minimal (DDM) if, for all input positions k and all
x,y € Iy such that x # y, there is some z € I, such that f(z[k — x]) # f(z[k — y]).
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Distributed data minimality

same; (7, 7) A same; (7', 7') A
Y = Vo' 3r.3r. ﬁsamei(ﬁ,ﬂ’) N ( 1( ) z( ) )

almost;(7,7") A = output(r, 7’)

o = Nevwn  SE={@nf0=y,  S§=PE})
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Distributed data minimality

same; (7, 7) A same; (7', 7') A
Y = Vo' 3r.3r. ﬂsamei(ﬂﬂr’) - ( 1( ) z( ) )

almost;(7,7") A = output(r, 7’)
am = Ny i S ={cy) [ f0 =y},  S§=PE])
Using the generalized framework

¢ Set of observable behaviors O = E}# are valid function applications.
¢ Not black-box monitorable, but gray-box monitorable (thanks to S).
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A sound monitor for distributed data minimality

same; (7, 7) A same; (7', 7') A
Y = Vo' 3r.3r. _'S&mei(WﬂT,) N ( 1( ) z( ) )

almost;(7,7") A = output(r, 7')

pam = Nevwn  SE={@nf0=y,  S§=PE})
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We build a monitor
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X otherwise.
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A sound monitor for distributed data minimality

We build a monitor

? if f(uin) # uou for some u € U,

Mdm(u) =<¢? if /\?:1 /\u,u’euNf,i(Pl"Oji(”in)a proji(u;n)) ?é X7
X otherwise.

using an oracle Ny ;(x,y) (implemented as symbolic execution + SMT solver):

vor? if3zelf(zlir x)) #f(z[i — yl]),
X or ? otherwise.

Nf,i(xvy) = {

The monitor is sound but not complete.
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Try it out!

o) E

https://github.com/sstucki/minion/
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Thank you!
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Checkout the minion monitor for data minimality
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