
Gray-box Monitoring of Hyperproperties

Sandro Stucki1 César Sánchez2

Gerardo Schneider1 Borzoo Bonakdarpour3

1GU | Chalmers, Sweden 2IMDEA SW, Spain 2ISU, USA

FM ’19, Porto, Portugal, 11 October 2019

sandro.stucki@gu.se @stuckintheory

1 / 26

sandro.stucki@gu.se
@stuckintheory

The monitorability cube

trace/hyper

black/gray

computability

[1, 4, 8]

[2, 3,
5, 6,
9]

[10]

2 / 26

Motivation: distributed data minimality

• Distributed data minimality (DDM)
• privacy property (GDPR)
• generalization of data minimality to a multi-input setting

• ∀∀∃∃-hyperproperty

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
• Challenges:

• Not black-box monitorable.
• Undecidable.
• Defined over arbitrary domains/datatypes.

Yet, we have a monitor. . .
what’s going on here?

3 / 26

Motivation: distributed data minimality

• Distributed data minimality (DDM)
• privacy property (GDPR)
• generalization of data minimality to a multi-input setting
• ∀∀∃∃-hyperproperty

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)

• Challenges:
• Not black-box monitorable.
• Undecidable.
• Defined over arbitrary domains/datatypes.

Yet, we have a monitor. . .
what’s going on here?

3 / 26

Motivation: distributed data minimality

• Distributed data minimality (DDM)
• privacy property (GDPR)
• generalization of data minimality to a multi-input setting
• ∀∀∃∃-hyperproperty

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
• Challenges:

• Not black-box monitorable.
• Undecidable.
• Defined over arbitrary domains/datatypes.

Yet, we have a monitor. . .
what’s going on here?

3 / 26

Motivation: distributed data minimality

• Distributed data minimality (DDM)
• privacy property (GDPR)
• generalization of data minimality to a multi-input setting
• ∀∀∃∃-hyperproperty

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
• Challenges:

• Not black-box monitorable.
• Undecidable.
• Defined over arbitrary domains/datatypes.

Yet, we have a monitor. . .

what’s going on here?

3 / 26

Motivation: distributed data minimality

• Distributed data minimality (DDM)
• privacy property (GDPR)
• generalization of data minimality to a multi-input setting
• ∀∀∃∃-hyperproperty

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
• Challenges:

• Not black-box monitorable.
• Undecidable.
• Defined over arbitrary domains/datatypes.

Yet, we have a monitor. . .
what’s going on here?

3 / 26

Trace properties – LTL

trace/hyper

black/gray

computability

3 / 26

3 / 26

Trace properties – LTL

ϕs = ϕl = ϕr =

t1 = · · · t1 |= ϕs t1 |= ϕl t1 |= ϕr

t2 = · · · t2 6|= ϕs t2 |= ϕl t2 6|= ϕr

t3 = · · · t3 6|= ϕs t3 |= ϕl t3 |= ϕr

ϕ ::= a
∣∣¬ϕ ∣∣ϕ ∨ ϕ ∣∣ϕ ∣∣ϕ U ϕ ϕ ≡ true U ϕ ϕ ≡ ¬¬ϕ

t |= p iff p ∈ t[0]
t |= ¬ϕ iff t 6|= ϕ
t |= ϕ1 ∨ ϕ2 iff t |= ϕ1 or t |= ϕ2
t |= ϕ iff t[1, ..] |= ϕ
t |= ϕ1 U ϕ2 iff for some i, t[i, ..] |= ϕ2 and for all j < i, t[j, ..] |= ϕ1

4 / 26

Trace properties – LTL

ϕs = ϕl = ϕr =

t1 = · · · t1 |= ϕs t1 |= ϕl t1 |= ϕr

t2 = · · · t2 6|= ϕs t2 |= ϕl t2 6|= ϕr

t3 = · · · t3 6|= ϕs t3 |= ϕl t3 |= ϕr

ϕ ::= a
∣∣¬ϕ ∣∣ϕ ∨ ϕ ∣∣ϕ ∣∣ϕ U ϕ ϕ ≡ true U ϕ ϕ ≡ ¬¬ϕ

t |= p iff p ∈ t[0]
t |= ¬ϕ iff t 6|= ϕ
t |= ϕ1 ∨ ϕ2 iff t |= ϕ1 or t |= ϕ2
t |= ϕ iff t[1, ..] |= ϕ
t |= ϕ1 U ϕ2 iff for some i, t[i, ..] |= ϕ2 and for all j < i, t[j, ..] |= ϕ1

4 / 26

Trace properties – LTL

ϕs = ϕl = ϕr =

t1 = · · · t1 |= ϕs t1 |= ϕl t1 |= ϕr

t2 = · · · t2 6|= ϕs t2 |= ϕl t2 6|= ϕr

t3 = · · · t3 6|= ϕs t3 |= ϕl t3 |= ϕr

ϕ ::= a
∣∣¬ϕ ∣∣ϕ ∨ ϕ ∣∣ϕ ∣∣ϕ U ϕ ϕ ≡ true U ϕ ϕ ≡ ¬¬ϕ

t |= p iff p ∈ t[0]
t |= ¬ϕ iff t 6|= ϕ
t |= ϕ1 ∨ ϕ2 iff t |= ϕ1 or t |= ϕ2
t |= ϕ iff t[1, ..] |= ϕ
t |= ϕ1 U ϕ2 iff for some i, t[i, ..] |= ϕ2 and for all j < i, t[j, ..] |= ϕ1

4 / 26

Monitoring LTL

ϕs = ϕl = ϕr =

• Observation: the world today at 10am

u10 =

• Update: the world at 11am

u11 =

ϕs Is there always coffee? u10 → ? , u11 → 7

ϕl Is there eventually coffee? u10 → 3, u11 → 3

ϕr Is there always eventually coffee? u10 → ? , u11 → ?

5 / 26

Monitoring LTL

ϕs = ϕl = ϕr =

• Observation: the world today at 10am

u10 =

• Update: the world at 11am

u11 =

ϕs Is there always coffee? u10 → ? , u11 → 7

ϕl Is there eventually coffee? u10 → 3, u11 → 3

ϕr Is there always eventually coffee? u10 → ? , u11 → ?

5 / 26

Monitoring LTL

ϕs = ϕl = ϕr =

• Observation: the world today at 10am

u10 =

• Update: the world at 11am

u11 =

ϕs Is there always coffee? u10 → ? , u11 → 7

ϕl Is there eventually coffee? u10 → 3, u11 → 3

ϕr Is there always eventually coffee? u10 → ? , u11 → ?

5 / 26

Monitoring LTL

ϕs = ϕl = ϕr =

• Observation: the world today at 10am

u10 =

• Update: the world at 11am

u11 =

ϕs Is there always coffee?

u10 → ? , u11 → 7

ϕl Is there eventually coffee? u10 → 3, u11 → 3

ϕr Is there always eventually coffee? u10 → ? , u11 → ?

5 / 26

Monitoring LTL

ϕs = ϕl = ϕr =

• Observation: the world today at 10am

u10 =

• Update: the world at 11am

u11 =

ϕs Is there always coffee? u10 → ?

, u11 → 7

ϕl Is there eventually coffee? u10 → 3, u11 → 3

ϕr Is there always eventually coffee? u10 → ? , u11 → ?

5 / 26

Monitoring LTL

ϕs = ϕl = ϕr =

• Observation: the world today at 10am

u10 =

• Update: the world at 11am

u11 =

ϕs Is there always coffee? u10 → ? , u11 → 7

ϕl Is there eventually coffee? u10 → 3, u11 → 3

ϕr Is there always eventually coffee? u10 → ? , u11 → ?

5 / 26

Monitoring LTL

ϕs = ϕl = ϕr =

• Observation: the world today at 10am

u10 =

• Update: the world at 11am

u11 =

ϕs Is there always coffee? u10 → ? , u11 → 7

ϕl Is there eventually coffee? u10 → 3, u11 → 3

ϕr Is there always eventually coffee? u10 → ? , u11 → ?

5 / 26

Monitoring LTL

ϕs = ϕl = ϕr =

• Observation: the world today at 10am

u10 =

• Update: the world at 11am

u11 =

ϕs Is there always coffee? u10 → ? , u11 → 7

ϕl Is there eventually coffee? u10 → 3, u11 → 3

ϕr Is there always eventually coffee? u10 → ? , u11 → ?

5 / 26

Monitoring LTL
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), at runtime.

Definition
A finite observation u permanently satisfies (resp. violates) ϕ, if every infinite extension of u satisfies
(resp. violates) ϕ:

u |=s ϕ iff for all t ∈ Σω such that u � t, t |= ϕ

u |=v ϕ iff for all t ∈ Σω such that u � t, t 6|= ϕ

u11 =

u11 6|=s u11 |=s u11 6|=s

u11 |=v u11 6|=v u11 6|=v

6 / 26

Monitoring LTL
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation u.

Definition
A finite observation u permanently satisfies (resp. violates) ϕ, if every infinite extension of u satisfies
(resp. violates) ϕ:

u |=s ϕ iff for all t ∈ Σω such that u � t, t |= ϕ

u |=v ϕ iff for all t ∈ Σω such that u � t, t 6|= ϕ

u11 =

u11 6|=s u11 |=s u11 6|=s

u11 |=v u11 6|=v u11 6|=v

6 / 26

Monitoring LTL
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation u.

Definition
A finite observation u permanently satisfies (resp. violates) ϕ, if every infinite extension of u satisfies
(resp. violates) ϕ:

u |=s ϕ iff for all t ∈ Σω such that u � t, t |= ϕ

u |=v ϕ iff for all t ∈ Σω such that u � t, t 6|= ϕ

u11 =

u11 6|=s u11 |=s u11 6|=s

u11 |=v u11 6|=v u11 6|=v

6 / 26

Monitoring LTL
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation u.

Definition
A finite observation u permanently satisfies (resp. violates) ϕ, if every infinite extension of u satisfies
(resp. violates) ϕ:

u |=s ϕ iff for all t ∈ Σω such that u � t, t |= ϕ

u |=v ϕ iff for all t ∈ Σω such that u � t, t 6|= ϕ

u11 =

u11 6|=s u11 |=s u11 6|=s

u11 |=v u11 6|=v u11 6|=v

6 / 26

Monitors for LTL
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation u.

A monitor for a property ϕ is a computable function Mϕ : Σ∗ → {3,7,?} that
decides a verdict for ϕ given a finite u.

The monitor Mϕ is sound if

u |=s ϕ if Mϕ(u) = 3, u |=v ϕ if Mϕ(u) = 7

The monitor Mϕ is complete if

Mϕ(u) = 3 if u |=s ϕ, Mϕ(u) = 7 if u |=v ϕ, Mϕ(u) = ? o/w.

Fact: every LTL formula has a sound and complete monitor.

7 / 26

Monitors for LTL
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation u.

A monitor for a property ϕ is a computable function Mϕ : Σ∗ → {3,7,?} that
decides a verdict for ϕ given a finite u.

The monitor Mϕ is sound if

u |=s ϕ if Mϕ(u) = 3, u |=v ϕ if Mϕ(u) = 7

The monitor Mϕ is complete if

Mϕ(u) = 3 if u |=s ϕ, Mϕ(u) = 7 if u |=v ϕ, Mϕ(u) = ? o/w.

Fact: every LTL formula has a sound and complete monitor.

7 / 26

Monitors for LTL
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation u.

A monitor for a property ϕ is a computable function Mϕ : Σ∗ → {3,7,?} that
decides a verdict for ϕ given a finite u.

The monitor Mϕ is sound if

u |=s ϕ if Mϕ(u) = 3, u |=v ϕ if Mϕ(u) = 7

The monitor Mϕ is complete if

Mϕ(u) = 3 if u |=s ϕ, Mϕ(u) = 7 if u |=v ϕ, Mϕ(u) = ? o/w.

Fact: every LTL formula has a sound and complete monitor.

7 / 26

Monitors for LTL
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation u.

A monitor for a property ϕ is a computable function Mϕ : Σ∗ → {3,7,?} that
decides a verdict for ϕ given a finite u.

The monitor Mϕ is sound if

u |=s ϕ if Mϕ(u) = 3, u |=v ϕ if Mϕ(u) = 7

The monitor Mϕ is complete if

Mϕ(u) = 3 if u |=s ϕ, Mϕ(u) = 7 if u |=v ϕ, Mϕ(u) = ? o/w.

Fact: every LTL formula has a sound and complete monitor.

7 / 26

Monitors for LTL
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation u.

A monitor for a property ϕ is a computable function Mϕ : Σ∗ → {3,7,?} that
decides a verdict for ϕ given a finite u.

The monitor Mϕ is sound if

u |=s ϕ if Mϕ(u) = 3, u |=v ϕ if Mϕ(u) = 7

The monitor Mϕ is complete if

Mϕ(u) = 3 if u |=s ϕ, Mϕ(u) = 7 if u |=v ϕ, Mϕ(u) = ? o/w.

Fact: every LTL formula has a sound and complete monitor.

7 / 26

Monitorability of LTL formulas
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation u.

ϕr = u11 =

u11 6|=s ϕr u11 6|=v ϕr

Observation: u 6|=s ϕr and u 6|=v ϕr for any u.

There’s no point in monitoring ϕr!

Definition (Pnueli & Zaks 2006)

A formula ϕ is (semantically) monitorable if every observation u has an
extension v � u, such that either v |=s ϕ or v |=v ϕ.

8 / 26

Monitorability of LTL formulas
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation u.

ϕr = u11 =

u11 6|=s ϕr u11 6|=v ϕr

Observation: u 6|=s ϕr and u 6|=v ϕr for any u.

There’s no point in monitoring ϕr!

Definition (Pnueli & Zaks 2006)

A formula ϕ is (semantically) monitorable if every observation u has an
extension v � u, such that either v |=s ϕ or v |=v ϕ.

8 / 26

Monitorability of LTL formulas
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation u.

ϕr = u11 =

u11 6|=s ϕr u11 6|=v ϕr

Observation: u 6|=s ϕr and u 6|=v ϕr for any u.

There’s no point in monitoring ϕr!

Definition (Pnueli & Zaks 2006)

A formula ϕ is (semantically) monitorable if every observation u has an
extension v � u, such that either v |=s ϕ or v |=v ϕ.

8 / 26

Monitorability of LTL formulas
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation u.

ϕr = u11 =

u11 6|=s ϕr u11 6|=v ϕr

Observation: u 6|=s ϕr and u 6|=v ϕr for any u.

There’s no point in monitoring ϕr!

Definition (Pnueli & Zaks 2006)

A formula ϕ is (semantically) monitorable if every observation u has an
extension v � u, such that either v |=s ϕ or v |=v ϕ.

8 / 26

LTL – Summary
• Properties defined over individual traces.
⇒ Properties describe sets of traces.
• Sound and complete monitors can be constructed for any

formula.
• Not every formula is monitorable. For example,

• safety and liveness properties are monitorable,
• recurrence properties () are not.

trace/hyper

black/gray

computability

[9] A. Pnueli and A. Zaks. PSL Model Checking and Run-time Verification via Testers., FM’06,
Springer, 2006.

[5] Y. Falcone, J-C. Fernandez, and L. Mounier. What can you verify and enforce at runtime?,
STTT 14(3), 2012.

[8] K. Havelund and D. Peled. Runtime Verification: From Propositional to First-Order Temporal
Logic. RV’18, Springer, 2018.

. . . and many more!

9 / 26

LTL – Summary
• Properties defined over individual traces.
⇒ Properties describe sets of traces.
• Sound and complete monitors can be constructed for any

formula.
• Not every formula is monitorable. For example,

• safety and liveness properties are monitorable,
• recurrence properties () are not.

trace/hyper

black/gray

computability

[9] A. Pnueli and A. Zaks. PSL Model Checking and Run-time Verification via Testers., FM’06,
Springer, 2006.

[5] Y. Falcone, J-C. Fernandez, and L. Mounier. What can you verify and enforce at runtime?,
STTT 14(3), 2012.

[8] K. Havelund and D. Peled. Runtime Verification: From Propositional to First-Order Temporal
Logic. RV’18, Springer, 2018.

. . . and many more!
9 / 26

Hyperproperties – HyperLTL

trace/hyper

black/gray

computability

9 / 26

Hyperproperties – HyperLTL

ϕu = ∀π.∀τ.(π → τ) ϕa = ∀π.∃τ.(π → τ)

T1 = { · · ·} T1 |= ϕu T1 |= ϕa

T2 = { · · · , · · ·} T2 6|= ϕu T2 |= ϕa

T3 = { · · · , · · · , T3 6|= ϕu T3 6|= ϕa

· · · , · · · , . . . }

ϕ ::= ∀π.ϕ
∣∣ ∃π.ϕ ∣∣ψ ψ ::= aπ

∣∣¬ψ ∣∣ψ ∨ ψ ∣∣ψ ∣∣ψ U ψ
Π |= aπ iff a ∈ Π(π)[0]
Π |= ψ1 ∨ ψ2 iff Π |= ψ1 or Π |= ψ2
Π |= ¬ψ iff Π 6|= ψ
Π |= ψ iff Π[1..] |= ψ
Π |= ψ1 U ψ2 iff for some i, Π[i, ..] |= ψ2, and

for all j < i T,Π[j, ..] |= ψ1

T,Π |= ∀π.ϕ iff T,Π[π → t] |= ϕ for all t ∈ T
T,Π |= ∃π.ϕ iff T,Π[π → t] |= ϕ for some t ∈ T
T,Π |= ψ iff Π |= ψ

10 / 26

Hyperproperties – HyperLTL

ϕu = ∀π.∀τ.(π → τ) ϕa = ∀π.∃τ.(π → τ)

T1 = { · · ·} T1 |= ϕu T1 |= ϕa

T2 = { · · · , · · ·} T2 6|= ϕu T2 |= ϕa

T3 = { · · · , · · · , T3 6|= ϕu T3 6|= ϕa

· · · , · · · , . . . }

ϕ ::= ∀π.ϕ
∣∣ ∃π.ϕ ∣∣ψ ψ ::= aπ

∣∣¬ψ ∣∣ψ ∨ ψ ∣∣ψ ∣∣ψ U ψ
Π |= aπ iff a ∈ Π(π)[0]
Π |= ψ1 ∨ ψ2 iff Π |= ψ1 or Π |= ψ2
Π |= ¬ψ iff Π 6|= ψ
Π |= ψ iff Π[1..] |= ψ
Π |= ψ1 U ψ2 iff for some i, Π[i, ..] |= ψ2, and

for all j < i T,Π[j, ..] |= ψ1

T,Π |= ∀π.ϕ iff T,Π[π → t] |= ϕ for all t ∈ T
T,Π |= ∃π.ϕ iff T,Π[π → t] |= ϕ for some t ∈ T
T,Π |= ψ iff Π |= ψ

10 / 26

Hyperproperties – HyperLTL

ϕu = ∀π.∀τ.(π → τ) ϕa = ∀π.∃τ.(π → τ)

T1 = { · · ·} T1 |= ϕu T1 |= ϕa

T2 = { · · · , · · ·} T2 6|= ϕu T2 |= ϕa

T3 = { · · · , · · · , T3 6|= ϕu T3 6|= ϕa

· · · , · · · , . . . }

ϕ ::= ∀π.ϕ
∣∣ ∃π.ϕ ∣∣ψ ψ ::= aπ

∣∣¬ψ ∣∣ψ ∨ ψ ∣∣ψ ∣∣ψ U ψ
Π |= aπ iff a ∈ Π(π)[0]
Π |= ψ1 ∨ ψ2 iff Π |= ψ1 or Π |= ψ2
Π |= ¬ψ iff Π 6|= ψ
Π |= ψ iff Π[1..] |= ψ
Π |= ψ1 U ψ2 iff for some i, Π[i, ..] |= ψ2, and

for all j < i T,Π[j, ..] |= ψ1

T,Π |= ∀π.ϕ iff T,Π[π → t] |= ϕ for all t ∈ T
T,Π |= ∃π.ϕ iff T,Π[π → t] |= ϕ for some t ∈ T
T,Π |= ψ iff Π |= ψ

10 / 26

Monitoring HyperLTL

ϕu = ∀π.∀τ.(π → τ) ϕa = ∀π.∃τ.(π → τ)

• Observation: the world today at 10am

U10 = { }

• Update: the world at 11am

U11 = { , }

ϕu Is there always coffee everywhere at the same time? U10 → ? , U11 → 7

ϕa Is there always coffee somewhere? U10 → ?, U11 → ?

11 / 26

Monitoring HyperLTL

ϕu = ∀π.∀τ.(π → τ) ϕa = ∀π.∃τ.(π → τ)

• Observation: the world today at 10am

U10 = { }

• Update: the world at 11am

U11 = { , }

ϕu Is there always coffee everywhere at the same time? U10 → ? , U11 → 7

ϕa Is there always coffee somewhere? U10 → ?, U11 → ?

11 / 26

Monitoring HyperLTL

ϕu = ∀π.∀τ.(π → τ) ϕa = ∀π.∃τ.(π → τ)

• Observation: the world today at 10am

U10 = { }

• Update: the world at 11am

U11 = { , }

ϕu Is there always coffee everywhere at the same time? U10 → ? , U11 → 7

ϕa Is there always coffee somewhere? U10 → ?, U11 → ?

11 / 26

Monitoring HyperLTL

ϕu = ∀π.∀τ.(π → τ) ϕa = ∀π.∃τ.(π → τ)

• Observation: the world today at 10am

U10 = { }

• Update: the world at 11am

U11 = { , , }

ϕu Is there always coffee everywhere at the same time? U10 → ? , U11 → 7

ϕa Is there always coffee somewhere? U10 → ?, U11 → ?

11 / 26

Monitoring HyperLTL

ϕu = ∀π.∀τ.(π → τ) ϕa = ∀π.∃τ.(π → τ)

• Observation: the world today at 10am

U10 = { }

• Update: the world at 11am

U11 = { , , }

ϕu Is there always coffee everywhere at the same time?

U10 → ? , U11 → 7

ϕa Is there always coffee somewhere? U10 → ?, U11 → ?

11 / 26

Monitoring HyperLTL

ϕu = ∀π.∀τ.(π → τ) ϕa = ∀π.∃τ.(π → τ)

• Observation: the world today at 10am

U10 = { }

• Update: the world at 11am

U11 = { , , }

ϕu Is there always coffee everywhere at the same time? U10 → ? ,

U11 → 7

ϕa Is there always coffee somewhere? U10 → ?, U11 → ?

11 / 26

Monitoring HyperLTL

ϕu = ∀π.∀τ.(π → τ) ϕa = ∀π.∃τ.(π → τ)

• Observation: the world today at 10am

U10 = { }

• Update: the world at 11am

U11 = { , , }

ϕu Is there always coffee everywhere at the same time? U10 → ? , U11 → 7

ϕa Is there always coffee somewhere? U10 → ?, U11 → ?

11 / 26

Monitoring HyperLTL

ϕu = ∀π.∀τ.(π → τ) ϕa = ∀π.∃τ.(π → τ)

• Observation: the world today at 10am

U10 = { }

• Update: the world at 11am

U11 = { , , }

ϕu Is there always coffee everywhere at the same time? U10 → ? , U11 → 7

ϕa Is there always coffee somewhere? U10 → ?, U11 → ?

11 / 26

Monitoring HyperLTL
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U.

Definition
A finite observation U ∈ Pfin(Σ∗) permanently satisfies (resp. violates) ϕ, if every infinite extension of
U satisfies (resp. violates) ϕ:

U |=s ϕ iff for all T ∈ P(Σω) such that U � T, T |= ϕ

U |=v ϕ iff for all T ∈ P(Σω) such that U � T, T 6|= ϕ

U11 = { , , }

U11 6|=s ∀π.∀τ.(π → τ) U11 6|=s ∀π.∃τ.(π → τ)

U11 |=v ∀π.∀τ.(π → τ) U11 6|=v ∀π.∃τ.(π → τ)

12 / 26

Monitoring HyperLTL
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U.

Definition
A finite observation U ∈ Pfin(Σ∗) permanently satisfies (resp. violates) ϕ, if every infinite extension of
U satisfies (resp. violates) ϕ:

U |=s ϕ iff for all T ∈ P(Σω) such that U � T, T |= ϕ

U |=v ϕ iff for all T ∈ P(Σω) such that U � T, T 6|= ϕ

U11 = { , , }

U11 6|=s ∀π.∀τ.(π → τ) U11 6|=s ∀π.∃τ.(π → τ)

U11 |=v ∀π.∀τ.(π → τ) U11 6|=v ∀π.∃τ.(π → τ)

12 / 26

Monitoring HyperLTL
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U.

Definition
A finite observation U ∈ Pfin(Σ∗) permanently satisfies (resp. violates) ϕ, if every infinite extension of
U satisfies (resp. violates) ϕ:

U |=s ϕ iff for all T ∈ P(Σω) such that U � T, T |= ϕ

U |=v ϕ iff for all T ∈ P(Σω) such that U � T, T 6|= ϕ

U11 = { , , }

U11 6|=s ∀π.∀τ.(π → τ) U11 6|=s ∀π.∃τ.(π → τ)

U11 |=v ∀π.∀τ.(π → τ) U11 6|=v ∀π.∃τ.(π → τ)

12 / 26

Monitorability of HyperLTL formulas
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U.

U11 = { , , }

ϕa = ∀π.∃τ.(π → τ) U11 6|=s ϕa U11 6|=v ϕa

Observation: U 6|=s ϕa and U 6|=v ϕa for any U.

There’s no point in monitoring ϕa!

Definition (Agrawal & Bonakdarpour 2016)

A formula ϕ is (semantically) monitorable if every observation U has an
extension V � U, such that V |=s ϕ or V |=v ϕ.

13 / 26

Monitorability of HyperLTL formulas
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U.

U11 = { , , }

ϕa = ∀π.∃τ.(π → τ) U11 6|=s ϕa U11 6|=v ϕa

Observation: U 6|=s ϕa and U 6|=v ϕa for any U.

There’s no point in monitoring ϕa!

Definition (Agrawal & Bonakdarpour 2016)

A formula ϕ is (semantically) monitorable if every observation U has an
extension V � U, such that V |=s ϕ or V |=v ϕ.

13 / 26

Monitorability of HyperLTL formulas
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U.

U11 = { , , }

ϕa = ∀π.∃τ.(π → τ) U11 6|=s ϕa U11 6|=v ϕa

Observation: U 6|=s ϕa and U 6|=v ϕa for any U.

There’s no point in monitoring ϕa!

Definition (Agrawal & Bonakdarpour 2016)

A formula ϕ is (semantically) monitorable if every observation U has an
extension V � U, such that V |=s ϕ or V |=v ϕ.

13 / 26

Monitorability of HyperLTL formulas
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U.

U11 = { , , }

ϕa = ∀π.∃τ.(π → τ) U11 6|=s ϕa U11 6|=v ϕa

Observation: U 6|=s ϕa and U 6|=v ϕa for any U.

There’s no point in monitoring ϕa!

Definition (Agrawal & Bonakdarpour 2016)

A formula ϕ is (semantically) monitorable if every observation U has an
extension V � U, such that V |=s ϕ or V |=v ϕ.

13 / 26

HyperLTL – Summary

• Properties defined over sets of traces.
⇒ Properties describe sets of sets of traces.
• Sound and complete monitors can be constructed for some

formulas.
• For example, for formulas without quantifier alternations.
• But what about formulas with alternations?

• Most formulas are not monitorable.
• For example, ∀+∃+-properties are not!

trace/hyper

black/gray

computability

[1] S. Agrawal and B. Bonakdarpour. Runtime Verification of k-Safety Hyperproperties in
HyperLTL. CSF’16, IEEE CS Press, 2016.

[8] K. Havelund and D. Peled. Runtime Verification: From Propositional to First-Order Temporal
Logic. RV’18, Springer, 2018.

[7] C. Hahn. Algorithms for Monitoring Hyperproperties. RV’19, Springer, 2019.

14 / 26

HyperLTL – Summary

• Properties defined over sets of traces.
⇒ Properties describe sets of sets of traces.
• Sound and complete monitors can be constructed for some

formulas.
• For example, for formulas without quantifier alternations.
• But what about formulas with alternations?

• Most formulas are not monitorable.
• For example, ∀+∃+-properties are not!

trace/hyper

black/gray

computability

[1] S. Agrawal and B. Bonakdarpour. Runtime Verification of k-Safety Hyperproperties in
HyperLTL. CSF’16, IEEE CS Press, 2016.

[8] K. Havelund and D. Peled. Runtime Verification: From Propositional to First-Order Temporal
Logic. RV’18, Springer, 2018.

[7] C. Hahn. Algorithms for Monitoring Hyperproperties. RV’19, Springer, 2019.
14 / 26

Gray-box monitoring (of hyperproperties)

trace/hyper

black/gray

computability

14 / 26

Why is ϕa not monitorable?

Theorem
Let ϕa = ∀π.∃τ.(π → τ). Then U 6|=s ϕa and U 6|=v ϕa for all U ∈ Pfin(Σ∗).

Proof.
U 6|=v ϕa U � Σω, and Σω |= ϕa because · · · ∈ Σω;
U 6|=s ϕa define T as T = {t ∈ Σω | w = u · · · for u ∈ U};

then U � T and T 6|= ϕa.

This theorem can be generalized to all formulas ϕ = ∀π.∃τ.P(π, τ) where P is
• a binary (non-temporal) predicate,
• serial,
• non-reflexive.

OK, but let’s have a closer look at this proof. . .

15 / 26

Why is ϕa not monitorable?

Theorem
Let ϕa = ∀π.∃τ.(π → τ). Then U 6|=s ϕa and U 6|=v ϕa for all U ∈ Pfin(Σ∗).

Proof.
U 6|=v ϕa U � Σω, and Σω |= ϕa because · · · ∈ Σω;

U 6|=s ϕa define T as T = {t ∈ Σω | w = u · · · for u ∈ U};
then U � T and T 6|= ϕa.

This theorem can be generalized to all formulas ϕ = ∀π.∃τ.P(π, τ) where P is
• a binary (non-temporal) predicate,
• serial,
• non-reflexive.

OK, but let’s have a closer look at this proof. . .

15 / 26

Why is ϕa not monitorable?

Theorem
Let ϕa = ∀π.∃τ.(π → τ). Then U 6|=s ϕa and U 6|=v ϕa for all U ∈ Pfin(Σ∗).

Proof.
U 6|=v ϕa U � Σω, and Σω |= ϕa because · · · ∈ Σω;
U 6|=s ϕa define T as T = {t ∈ Σω | w = u · · · for u ∈ U};

then U � T and T 6|= ϕa.

This theorem can be generalized to all formulas ϕ = ∀π.∃τ.P(π, τ) where P is
• a binary (non-temporal) predicate,
• serial,
• non-reflexive.

OK, but let’s have a closer look at this proof. . .

15 / 26

Why is ϕa not monitorable?

Theorem
Let ϕa = ∀π.∃τ.(π → τ). Then U 6|=s ϕa and U 6|=v ϕa for all U ∈ Pfin(Σ∗).

Proof.
U 6|=v ϕa U � Σω, and Σω |= ϕa because · · · ∈ Σω;
U 6|=s ϕa define T as T = {t ∈ Σω | w = u · · · for u ∈ U};

then U � T and T 6|= ϕa.

This theorem can be generalized to all formulas ϕ = ∀π.∃τ.P(π, τ) where P is
• a binary (non-temporal) predicate,
• serial,
• non-reflexive.

OK, but let’s have a closer look at this proof. . .

15 / 26

Why is ϕa not monitorable?

Theorem
Let ϕa = ∀π.∃τ.(π → τ). Then U 6|=s ϕa and U 6|=v ϕa for all U ∈ Pfin(Σ∗).

Proof.
U 6|=v ϕa U � Σω, and Σω |= ϕa because · · · ∈ Σω;
U 6|=s ϕa define T as T = {t ∈ Σω | w = u · · · for u ∈ U};

then U � T and T 6|= ϕa.

This theorem can be generalized to all formulas ϕ = ∀π.∃τ.P(π, τ) where P is
• a binary (non-temporal) predicate,
• serial,
• non-reflexive.

OK, but let’s have a closer look at this proof. . .
15 / 26

Why is ϕa not monitorable?

Theorem
Let ϕa = ∀π.∃τ.(π → τ). Then U 6|=s ϕa and U 6|=v ϕa for all U ∈ Pfin(Σ∗).

Proof.
U 6|=v ϕa U � Σω, and Σω |= ϕa because · · · ∈ Σω ;

. . .

This step is somewhat dubious.

• Realistic systems don’t realize every possible trace.
• There is only a finite number of coffee dispensers in the world (sadly).

When monitoring hyperproperties, we’d like to take into account
some information about the system

(gray-box monitoring).

16 / 26

Why is ϕa not monitorable?

Theorem
Let ϕa = ∀π.∃τ.(π → τ). Then U 6|=s ϕa and U 6|=v ϕa for all U ∈ Pfin(Σ∗).

Proof.
U 6|=v ϕa U � Σω, and Σω |= ϕa because · · · ∈ Σω ;

. . .

This step is somewhat dubious.
• Realistic systems don’t realize every possible trace.

• There is only a finite number of coffee dispensers in the world (sadly).

When monitoring hyperproperties, we’d like to take into account
some information about the system

(gray-box monitoring).

16 / 26

Why is ϕa not monitorable?

Theorem
Let ϕa = ∀π.∃τ.(π → τ). Then U 6|=s ϕa and U 6|=v ϕa for all U ∈ Pfin(Σ∗).

Proof.
U 6|=v ϕa U � Σω, and Σω |= ϕa because · · · ∈ Σω ;

. . .

This step is somewhat dubious.
• Realistic systems don’t realize every possible trace.
• There is only a finite number of coffee dispensers in the world (sadly).

When monitoring hyperproperties, we’d like to take into account
some information about the system

(gray-box monitoring).

16 / 26

Why is ϕa not monitorable?

Theorem
Let ϕa = ∀π.∃τ.(π → τ). Then U 6|=s ϕa and U 6|=v ϕa for all U ∈ Pfin(Σ∗).

Proof.
U 6|=v ϕa U � Σω, and Σω |= ϕa because · · · ∈ Σω ;

. . .

This step is somewhat dubious.
• Realistic systems don’t realize every possible trace.
• There is only a finite number of coffee dispensers in the world (sadly).

When monitoring hyperproperties, we’d like to take into account
some information about the system

(gray-box monitoring).

16 / 26

Gray-box monitoring of HyperLTL properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U.

Definition

A finite observation U ∈ Pfin(Σ∗) permanently satisfies (resp. violates) ϕ,
if every infinite extension of U satisfies (resp. violates) ϕ:

U |=s ϕ iff for all T ∈ P(Σω) such that U � T, T |= ϕ

U |=v ϕ iff for all T ∈ P(Σω) such that U � T, T 6|= ϕ

S = {T ∈ P(Σω) | |T| = 3} U = { , , }

U 6|=s ∀π.∃τ.(π → τ) U |=v ∀π.∃τ.(π → τ)

17 / 26

Gray-box monitoring of HyperLTL properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U of a system S.

Definition

A finite observation U ∈ Pfin(Σ∗) permanently satisfies (resp. violates) ϕ,
if every infinite extension of U satisfies (resp. violates) ϕ:

U |=s ϕ iff for all T ∈ P(Σω) such that U � T, T |= ϕ

U |=v ϕ iff for all T ∈ P(Σω) such that U � T, T 6|= ϕ

S = {T ∈ P(Σω) | |T| = 3} U = { , , }

U 6|=s ∀π.∃τ.(π → τ) U |=v ∀π.∃τ.(π → τ)

17 / 26

Gray-box monitoring of HyperLTL properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U of a system S.

Definition
Given a set of system behaviors S ⊆ P(Σω),
a finite observation U ∈ Pfin(Σ∗) permanently satisfies (resp. violates) ϕ,
if every infinite extension of U in S satisfies (resp. violates) ϕ:

U |=s
S ϕ iff for all T ∈ S such that U � T, T |= ϕ

U |=v
S ϕ iff for all T ∈ S such that U � T, T 6|= ϕ

S = {T ∈ P(Σω) | |T| = 3} U = { , , }

U 6|=s ∀π.∃τ.(π → τ) U |=v ∀π.∃τ.(π → τ)

17 / 26

Gray-box monitoring of HyperLTL properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U of a system S.

Definition
Given a set of system behaviors S ⊆ P(Σω),
a finite observation U ∈ Pfin(Σ∗) permanently satisfies (resp. violates) ϕ,
if every infinite extension of U in S satisfies (resp. violates) ϕ:

U |=s
S ϕ iff for all T ∈ S such that U � T, T |= ϕ

U |=v
S ϕ iff for all T ∈ S such that U � T, T 6|= ϕ

S = {T ∈ P(Σω) | |T| = 3} U = { , , }

U 6|=s ∀π.∃τ.(π → τ) U |=v ∀π.∃τ.(π → τ)

17 / 26

Gray-box monitoring in general
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation O of a system S.

Definition
Given a set of system behaviors S ⊆ B,
a finite observation O ∈ O permanently satisfies (resp. violates) ϕ,
if every infinite extension of O in S satisfies (resp. violates) ϕ:

O |=s
S ϕ iff for all B ∈ S such that O � B, B |= ϕ

O |=v
S ϕ iff for all B ∈ S such that O � B, B 6|= ϕ

A formula ϕ is semantically gray-box monitorable for a system S if every
observation O has an extension P � O in S, such that P |=s

S ϕ or P |=v
S ϕ.

18 / 26

Gray-box monitoring in general
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation O of a system S.

Definition
Given a set of system behaviors S ⊆ B,
a finite observation O ∈ O permanently satisfies (resp. violates) ϕ,
if every infinite extension of O in S satisfies (resp. violates) ϕ:

O |=s
S ϕ iff for all B ∈ S such that O � B, B |= ϕ

O |=v
S ϕ iff for all B ∈ S such that O � B, B 6|= ϕ

A formula ϕ is semantically gray-box monitorable for a system S if every
observation O has an extension P � O in S, such that P |=s

S ϕ or P |=v
S ϕ.

18 / 26

Gray-box monitors for ∀+∃+-properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation O of a system S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O → {3,7,?} that decides a verdict for ϕ given a finite O in S.

Assuming ϕ = ∀π.∃τ.ψ(π, τ), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T � U of a given U permanently violate ϕ.

Example: ϕa = ∀π.∃τ.(π → τ) S = {T ∈ P(Σω) | |T| = 3}

Negate ϕa: ¬ϕa = ∃π.¬∃τ.(π → τ)

{ , } 7→ { · · · , · · · , · · · } ?

{ , , } 7→ ∅ 7

19 / 26

Gray-box monitors for ∀+∃+-properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation O of a system S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O → {3,7,?} that decides a verdict for ϕ given a finite O in S.

Assuming ϕ = ∀π.∃τ.ψ(π, τ), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T � U of a given U permanently violate ϕ.

Example: ϕa = ∀π.∃τ.(π → τ) S = {T ∈ P(Σω) | |T| = 3}

Negate ϕa: ¬ϕa = ∃π.¬∃τ.(π → τ)

{ , } 7→ { · · · , · · · , · · · } ?

{ , , } 7→ ∅ 7

19 / 26

Gray-box monitors for ∀+∃+-properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation O of a system S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O → {3,7,?} that decides a verdict for ϕ given a finite O in S.

Assuming ϕ = ∀π.∃τ.ψ(π, τ), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T � U of a given U permanently violate ϕ.

Example: ϕa = ∀π.∃τ.(π → τ) S = {T ∈ P(Σω) | |T| = 3}

Negate ϕa: ¬ϕa = ∃π.¬∃τ.(π → τ)

{ , } 7→ { · · · , · · · , · · · } ?

{ , , } 7→ ∅ 7

19 / 26

Gray-box monitors for ∀+∃+-properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation O of a system S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O → {3,7,?} that decides a verdict for ϕ given a finite O in S.

Assuming ϕ = ∀π.∃τ.ψ(π, τ), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T � U of a given U permanently violate ϕ.

Example: ϕa = ∀π.∃τ.(π → τ) S = {T ∈ P(Σω) | |T| = 3}

Negate ϕa: ¬ϕa = ∃π.¬∃τ.(π → τ)

{ , } 7→ { · · · , · · · , · · · } ?

{ , , } 7→ ∅ 7

19 / 26

Gray-box monitors for ∀+∃+-properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation O of a system S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O → {3,7,?} that decides a verdict for ϕ given a finite O in S.

Assuming ϕ = ∀π.∃τ.ψ(π, τ), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T � U of a given U permanently violate ϕ.

Example: ϕa = ∀π.∃τ.(π → τ) S = {T ∈ P(Σω) | |T| = 3}

Negate ϕa: ¬ϕa = ∃π.¬∃τ.(π → τ)

{ , } 7→ { · · · , · · · , · · · } ?

{ , , } 7→ ∅ 7

19 / 26

Gray-box monitors for ∀+∃+-properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation O of a system S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O → {3,7,?} that decides a verdict for ϕ given a finite O in S.

Assuming ϕ = ∀π.∃τ.ψ(π, τ), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T � U of a given U permanently violate ϕ.

Example: ϕa = ∀π.∃τ.(π → τ) S = {T ∈ P(Σω) | |T| = 3}

Negate ϕa: ¬ϕa = ∃π.¬∃τ.(π → τ) instantiate

{ , } 7→ { · · · , · · · , · · · } ?

{ , , } 7→ ∅ 7

19 / 26

Gray-box monitors for ∀+∃+-properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation O of a system S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O → {3,7,?} that decides a verdict for ϕ given a finite O in S.

Assuming ϕ = ∀π.∃τ.ψ(π, τ), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T � U of a given U permanently violate ϕ.

Example: ϕa = ∀π.∃τ.(π → τ) S = {T ∈ P(Σω) | |T| = 3}

Negate ϕa: ¬ϕa = ∃π.¬∃τ.(π → τ) instantiate solve

{ , } 7→ { · · · , · · · , · · · } ?

{ , , } 7→ ∅ 7

19 / 26

Gray-box monitors for ∀+∃+-properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation O of a system S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O → {3,7,?} that decides a verdict for ϕ given a finite O in S.

Assuming ϕ = ∀π.∃τ.ψ(π, τ), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T � U of a given U permanently violate ϕ.

Example: ϕa = ∀π.∃τ.(π → τ) S = {T ∈ P(Σω) | |T| = 3}

Negate ϕa: ¬ϕa = ∃π.¬∃τ.(π → τ) instantiate solve

{ , } 7→ { · · · , · · · , · · · } ?

{ , , } 7→ ∅ 7

19 / 26

Gray-box monitoring – Summary
• Properties defined over observations (e.g. traces or sets of

traces).
⇒ Properties describe sets of observations.
• Sound and complete monitors can be constructed for some

formulas.
• For example, for formulas without quantifier alternations (as

for black-box).
• But also for ∀+∃+-formulas when S imposes enough

constraints.
• Monitorability of formulas depends on set of valid system

behaviors S.
• For example, ∀+∃+-properties are monitorable for some

choices of S.
• We will see a more interesting example later. . .

trace/hyper

black/gray

computability

20 / 26

Undecidable hyperproperties

trace/hyper

black/gray

computability

20 / 26

Monitorability is not existence of monitors
A formula ϕ is semantically gray-box monitorable for a system S if every
observation O has an extension P � O in S, such that P |=s

S ϕ or P |=v
S ϕ.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O{3,7,?} that decides a verdict for ϕ given a finite u.

Observation: Monitorability of ϕ in S does not guarantee the existence of a sound
and complete monitor Mϕ,S .

Example: Let T be some Turing machine.

S = {t ∈ Σω | ti = the state of T after i steps}, ϕ =halt.

Because T is deterministic, either u |=s
S ϕ or u |=v

S ϕ, for any u in S.
⇒ ϕ is monitorable in S;
⇒ but there is no sound and complete monitor Mϕ,S .

21 / 26

Monitorability is not existence of monitors
A formula ϕ is semantically gray-box monitorable for a system S if every
observation O has an extension P � O in S, such that P |=s

S ϕ or P |=v
S ϕ.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O{3,7,?} that decides a verdict for ϕ given a finite u.

Observation: Monitorability of ϕ in S does not guarantee the existence of a sound
and complete monitor Mϕ,S .

Example: Let T be some Turing machine.

S = {t ∈ Σω | ti = the state of T after i steps}, ϕ =halt.

Because T is deterministic, either u |=s
S ϕ or u |=v

S ϕ, for any u in S.
⇒ ϕ is monitorable in S;
⇒ but there is no sound and complete monitor Mϕ,S .

21 / 26

Monitorability is not existence of monitors
A formula ϕ is semantically gray-box monitorable for a system S if every
observation O has an extension P � O in S, such that P |=s

S ϕ or P |=v
S ϕ.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O{3,7,?} that decides a verdict for ϕ given a finite u.

Observation: Monitorability of ϕ in S does not guarantee the existence of a sound
and complete monitor Mϕ,S .

Example: Let T be some Turing machine.

S = {t ∈ Σω | ti = the state of T after i steps}, ϕ =halt.

Because T is deterministic, either u |=s
S ϕ or u |=v

S ϕ, for any u in S.
⇒ ϕ is monitorable in S;
⇒ but there is no sound and complete monitor Mϕ,S .

21 / 26

Monitorability is not existence of monitors
A formula ϕ is semantically gray-box monitorable for a system S if every
observation O has an extension P � O in S, such that P |=s

S ϕ or P |=v
S ϕ.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O{3,7,?} that decides a verdict for ϕ given a finite u.

Observation: Monitorability of ϕ in S does not guarantee the existence of a sound
and complete monitor Mϕ,S .

Example: Let T be some Turing machine.

S = {t ∈ Σω | ti = the state of T after i steps}, ϕ =halt.

Because T is deterministic, either u |=s
S ϕ or u |=v

S ϕ, for any u in S.

⇒ ϕ is monitorable in S;
⇒ but there is no sound and complete monitor Mϕ,S .

21 / 26

Monitorability is not existence of monitors
A formula ϕ is semantically gray-box monitorable for a system S if every
observation O has an extension P � O in S, such that P |=s

S ϕ or P |=v
S ϕ.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O{3,7,?} that decides a verdict for ϕ given a finite u.

Observation: Monitorability of ϕ in S does not guarantee the existence of a sound
and complete monitor Mϕ,S .

Example: Let T be some Turing machine.

S = {t ∈ Σω | ti = the state of T after i steps}, ϕ =halt.

Because T is deterministic, either u |=s
S ϕ or u |=v

S ϕ, for any u in S.
⇒ ϕ is monitorable in S;

⇒ but there is no sound and complete monitor Mϕ,S .

21 / 26

Monitorability is not existence of monitors
A formula ϕ is semantically gray-box monitorable for a system S if every
observation O has an extension P � O in S, such that P |=s

S ϕ or P |=v
S ϕ.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O{3,7,?} that decides a verdict for ϕ given a finite u.

Observation: Monitorability of ϕ in S does not guarantee the existence of a sound
and complete monitor Mϕ,S .

Example: Let T be some Turing machine.

S = {t ∈ Σω | ti = the state of T after i steps}, ϕ =halt.

Because T is deterministic, either u |=s
S ϕ or u |=v

S ϕ, for any u in S.
⇒ ϕ is monitorable in S;
⇒ but there is no sound and complete monitor Mϕ,S .

21 / 26

Monitorability is not existence of monitors
A formula ϕ is semantically gray-box monitorable for a system S if every
observation O has an extension P � O in S, such that P |=s

S ϕ or P |=v
S ϕ.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O{3,7,?} that decides a verdict for ϕ given a finite u.

Observation: Monitorability of ϕ in S does not guarantee the existence of a sound
and complete monitor Mϕ,S .

Example: Let T be some Turing machine.

S = {t ∈ Σω | ti = the state of T after i steps}, ϕ =halt.

Because T is deterministic, either u |=s
S ϕ or u |=v

S ϕ, for any u in S.
⇒ ϕ is monitorable in S;
⇒ there is a sound monitor Mϕ,S that only answers 3 or ?!

21 / 26

Case study: distributed data minimality

trace/hyper

black/gray

computability

21 / 26

Slide by David Basin, Can we Verify GDPR Compliance?, RV’19 keynote.

21 / 26

Case study: distributed data minimality

• Distributed data minimality (DDM)
• privacy property (GDPR)
• generalization of data minimality to a multi-input setting
• ∀∀∃∃-hyperproperty

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)

• Challenges:
• Not black-box monitorable.
• Undecidable.
• Defined over arbitrary domains/datatypes.

Yet, we have a monitor. . .
here’s how. . .

22 / 26

Case study: distributed data minimality

• Distributed data minimality (DDM)
• privacy property (GDPR)
• generalization of data minimality to a multi-input setting
• ∀∀∃∃-hyperproperty

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
• Challenges:

• Not black-box monitorable.
• Undecidable.
• Defined over arbitrary domains/datatypes.

Yet, we have a monitor. . .
here’s how. . .

22 / 26

Case study: distributed data minimality

• Distributed data minimality (DDM)
• privacy property (GDPR)
• generalization of data minimality to a multi-input setting
• ∀∀∃∃-hyperproperty

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
• Challenges:

• Not black-box monitorable.
• Undecidable.
• Defined over arbitrary domains/datatypes.

Yet, we have a monitor. . .

here’s how. . .

22 / 26

Case study: distributed data minimality

• Distributed data minimality (DDM)
• privacy property (GDPR)
• generalization of data minimality to a multi-input setting
• ∀∀∃∃-hyperproperty

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
• Challenges:

• Not black-box monitorable.
• Undecidable.
• Defined over arbitrary domains/datatypes.

Yet, we have a monitor. . .
here’s how. . .

22 / 26

Distributed data minimality

Definition (Antignac, Sands & Schneider, 2017)

A function f is distributed data-minimal (DDM) if, for all input positions k and all
x, y ∈ Ik such that x 6= y, there is some z ∈ I, such that f (z[k 7→ x]) 6= f (z[k 7→ y]).

Using the generalized framework
• Set of observable behaviors O = Σ#

f are valid function applications.
• Not black-box monitorable.

23 / 26

Distributed data minimality

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
ϕdm =

∧n
i=1 ϕi, Σ#

f = {(x, y) | f (x) = y}, Sf = P(Σ#
f)

Using the generalized framework
• Set of observable behaviors O = Σ#

f are valid function applications.
• Not black-box monitorable.

23 / 26

Distributed data minimality

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
ϕdm =

∧n
i=1 ϕi, Σ#

f = {(x, y) | f (x) = y}, Sf = P(Σ#
f)

Using the generalized framework
• Set of observable behaviors O = Σ#

f are valid function applications.

• Not black-box monitorable.

23 / 26

Distributed data minimality

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
ϕdm =

∧n
i=1 ϕi, Σ#

f = {(x, y) | f (x) = y}, Sf = P(Σ#
f)

Using the generalized framework
• Set of observable behaviors O = Σ#

f are valid function applications.
• Not black-box monitorable.

23 / 26

Distributed data minimality

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
ϕdm =

∧n
i=1 ϕi, Σ#

f = {(x, y) | f (x) = y}, Sf = P(Σ#
f)

Using the generalized framework
• Set of observable behaviors O = Σ#

f are valid function applications.
• Not black-box monitorable, but gray-box monitorable (thanks to S).

23 / 26

A sound monitor for distributed data minimality

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
ϕdm =

∧n
i=1 ϕi, Σ#

f = {(x, y) | f (x) = y}, Sf = P(Σ#
f)

We build a monitor

Mdm(U) =

? if f (uin) 6= uout for some u ∈ U,
? if

∧n
i=1
∧

u,u′∈U Nf ,i(proji(uin),proji(u′in)) 6= 7,

7 otherwise.

using an oracle Nf ,i(x, y) (implemented as symbolic execution + SMT solver):

Nf ,i(x, y) =

{
3 or ? if ∃z ∈ I. f (z[i 7→ x]) 6= f (z[i 7→ y]),

7 or ? otherwise.

24 / 26

A sound monitor for distributed data minimality

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
ϕdm =

∧n
i=1 ϕi, Σ#

f = {(x, y) | f (x) = y}, Sf = P(Σ#
f)

We build a monitor

Mdm(U) =

? if f (uin) 6= uout for some u ∈ U,
? if

∧n
i=1
∧

u,u′∈U Nf ,i(proji(uin), proji(u′in)) 6= 7,

7 otherwise.

using an oracle Nf ,i(x, y) (implemented as symbolic execution + SMT solver):

Nf ,i(x, y) =

{
3 or ? if ∃z ∈ I. f (z[i 7→ x]) 6= f (z[i 7→ y]),

7 or ? otherwise.

24 / 26

A sound monitor for distributed data minimality

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
ϕdm =

∧n
i=1 ϕi, Σ#

f = {(x, y) | f (x) = y}, Sf = P(Σ#
f)

We build a monitor

Mdm(U) =

? if f (uin) 6= uout for some u ∈ U,
? if

∧n
i=1
∧

u,u′∈U Nf ,i(proji(uin), proji(u′in)) 6= 7,

7 otherwise.

using an oracle Nf ,i(x, y) (implemented as symbolic execution + SMT solver):

Nf ,i(x, y) =

{
3 or ? if ∃z ∈ I. f (z[i 7→ x]) 6= f (z[i 7→ y]),

7 or ? otherwise.
24 / 26

A sound monitor for distributed data minimality
We build a monitor

Mdm(U) =

? if f (uin) 6= uout for some u ∈ U,
? if

∧n
i=1
∧

u,u′∈U Nf ,i(proji(uin), proji(u′in)) 6= 7,

7 otherwise.

using an oracle Nf ,i(x, y) (implemented as symbolic execution + SMT solver):

Nf ,i(x, y) =

{
3 or ? if ∃z ∈ I. f (z[i 7→ x]) 6= f (z[i 7→ y]),

7 or ? otherwise.

The monitor is sound but not complete.

24 / 26

Try it out!

https://github.com/sstucki/minion/

25 / 26

https://github.com/sstucki/minion/

Thank you!

Coauthors

• César Sánchez, IMDEA SW
• Borzoo Bonakdarpour, ISU
• Gerardo Schneider, GU/Chalmers

Checkout the minion monitor for data minimality

https://github.com/sstucki/minion/

26 / 26

https://github.com/sstucki/minion/

Shreya Agrawal and Borzoo Bonakdarpour.
Runtime verification of k-safety hyperproperties in HyperLTL.
In Proc. of the IEEE 29th Computer Security Foundations (CSF’16), pages
239–252. IEEE CS Press, 2016.

Andreas Bauer, Martin Leucker, and Chrisitan Schallhart.
Runtime verification for LTL and TLTL.
ACM T. Softw. Eng. Meth., 20(4):14, 2011.

Andreas Bauer, Martin Leucker, and Christian Schallhart.
The good, the bad, and the ugly—but how ugly is ugly?
In Proc. of the 7th Int’l Workshop on Runtime Verification (RV’07), volume
4839 of LNCS, pages 126–138. Springer, 2007.

Borzoo Bonakdarpour, César Sánchez, and Gerardo Schneider.
Monitoring hyperproperties by combining static analysis and runtime
verification.

26 / 26

In Proc. of the 8th Int’l Symp. on Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA’2018). Verification. Part II, volume 11245 of
LNCS, pages 8–27. Springer, 2018.

Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier.
What can you verify and enforce at runtime?
International Journal on Software Tools for Technology Transfer (STTT),
14(3):349–382, 2012.

Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup.
Monitoring hyperproperties.
In Proc. of 17th Int’l Conf. on Runtime Verification (RV’17), volume 10548 of
LNCS, pages 190–207. Springer, 2017.

Christopher Hahn.
Algorithms for monitoring hyperproperties.
In Bernd Finkbeiner and Leonardo Mariani, editors, Runtime Verification,
pages 70–90, Cham, 2019. Springer International Publishing.

26 / 26

Klaus Havelund and Doron Peled.
Runtime verification: From propositional to first-order temporal logic.
In Proc. of the 18th Int’l Conf. on Runtime Verification (RV’18), volume 11237
of LNCS, pages 90–112. Springer, 2018.

Amir Pnueli and Aleksandr Zaks.
PSL model checking and run-time verification via testers.
In Proc. of the 14th Int’l Symp on Formal Methods (FM’06), volume 4085 of
LNCS, pages 573–586. Springer, 2006.

Xian Zhang, Martin Leucker, and Wei Dong.
Runtime verification with predictive semantics.
In Proc. of 4th NASA Int’l Symp on Formal Methods (NFM’12), volume 7226 of
LNCS, pages 418–432. Springer, 2012.

26 / 26

Except where otherwise noted, this work is licensed under

http://creativecommons.org/licenses/by/3.0/

26 / 26

http://creativecommons.org/licenses/by/3.0/

