Gray-box Monitoring of Hyperproperties

Sandro Stucki' César Sanchez?
Gerardo Schneider' Borzoo Bonakdarpour®

'GU | Chalmers, Sweden 2IMDEA SW, Spain 2ISU, USA

FM *19, Porto, Portugal, 11 October 2019

sandro.stucki@gu.se @stuckintheory

'y CHALMERS

UNIVERSITY OF UNIVERSITY OF TECHNOLOGY

GOTHENBURG

1/26

sandro.stucki@gu.se
@stuckintheory

The monitorability cube

trace/hyper

computability

(10]

/ black/gray

2/26

Motivation: distributed data minimality

¢ Distributed data minimality (DDM)

® privacy property (GDPR)
® generalization of data minimality to a multi-input setting

3/26

Motivation: distributed data minimality

¢ Distributed data minimality (DDM)
® privacy property (GDPR)
® generalization of data minimality to a multi-input setting
® \W33-hyperproperty

o = VYa.vr' 3r.37. —same;(m, ') — <

same;(m, 7) A same; (7', 7') A
almost;(7, 7") A = output(r, 1)

3/26

Motivation: distributed data minimality

¢ Distributed data minimality (DDM)

® privacy property (GDPR)
® generalization of data minimality to a multi-input setting
® \W33-hyperproperty

same;(m, 7) A same; (7', 7)) A
i = VTF.V?T/.ET.HTI,ﬁsamei(ﬂ-7ﬂ-/)_>< 1()) l(3))

almost;(7, 7") A = output(r, 1)

e Challenges:

* Not black-box monitorable.
* Undecidable.
¢ Defined over arbitrary domains/datatypes.

3/26

Motivation: distributed data minimality

¢ Distributed data minimality (DDM)
® privacy property (GDPR)
® generalization of data minimality to a multi-input setting
® \W33-hyperproperty
, , , same;(m, 7) A same; (7', 7') A
v; = VYr¥r'.3r.3r" —~same(m, 7') — , ,
almost;(7,7") A = output(r, 7’)
e Challenges:

* Not black-box monitorable.
* Undecidable.
¢ Defined over arbitrary domains/datatypes.

Yet, we have a monitor...

3/26

Motivation: distributed data minimality

¢ Distributed data minimality (DDM)
® privacy property (GDPR)
® generalization of data minimality to a multi-input setting
® \W33-hyperproperty
, , , same;(m, 7) A same; (7', 7') A
v; = VYr¥r'.3r.3r" —~same(m, 7') — , ,
almost;(7,7") A = output(r, 7’)
e Challenges:

* Not black-box monitorable.
* Undecidable.
¢ Defined over arbitrary domains/datatypes.

Yet, we have a monitor...
what'’s going on here?

3/26

Trace properties — LTL

trace/hyper

computability

black/gray

3/26

Trace properties — LTL

SOSZDO Spl:<>- SOVZDQO

4/26

Trace properties — LTL

ws = = o = O= or = OO=

tlz tl):SOS tl):(’pl tl):(pr
t) = = - tzb&gps tz):(,Ol tZl#(Pr
b = bebebe - ts b~ s ts = ¢ ts = o

4/26

Trace properties — LTL

ws = = o = O= or = OO=

tlZ-----o... tl):SOS tl):(’pl tl):(’pr
t) = == e ta = s tr = ¢ ta I~ r
t; = eSeees - - t3 [~ s ts = w1 ts = o

pu=al-e|eVe|Op|eUe Cp=tue e Op=-Ome

tEp ifft pet0]

tE=—p iff tHE @

tEe1 Ve it tEpiortE e

tE Oy ifft L.]Ee

tE U @ iff for some i, t[i,..] = ¢y and forallj < i, t[j,..] = ¢1

4/26

Monitoring LTL

ps = O= == o =00=

5/26

Monitoring LTL
ps == == o =00=

¢ Observation: the world today at 10am

ulozoooo

5/26

Monitoring LTL
ps == == o =00=

¢ Observation: the world today at 10am

ulozoooo

e Update: the world at 11am

“11:°°"‘°

5/26

Monitoring LTL
ps == == o =00=

¢ Observation: the world today at 10am

ulozoooo

e Update: the world at 11am

ullzooooo

vs Is there always coffee?

5/26

Monitoring LTL
ps == == o =00=

¢ Observation: the world today at 10am

ulozoooo

e Update: the world at 11am

ullzooooo

vs Is there always coffee? uyp — ?

5/26

Monitoring LTL
ps == == o =00=

¢ Observation: the world today at 10am

ulozoooo

e Update: the world at 11am

ullzooooo

s Is there always coffee? Uy — ?, upp — X
2

5/26

Monitoring LTL
ps == == o =00=

¢ Observation: the world today at 10am

ulozoooo

e Update: the world at 11am

u’ll:““‘

vs Is there always coffee? up — ?, un — X
¢ Is there eventually coffee? uyp — v, un — v

5/26

Ps
2
Pr

Monitoring LTL
ps == == o =00=

Observation: the world today at 10am

ulozoooo

Update: the world at 11am

ullzooooo

Is there always coffee? Uy — ?, upp — X
Is there eventually coffee? uyp — v, un — v
Is there always eventually coffee? w9 — ?, uyp — ?

5/26

Monitoring LTL

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), at runtime.

6/26

Monitoring LTL

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation u.

6/26

Monitoring LTL

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation u.

Definition
A finite observation u permanently satisfies (resp. violates) ¢, if every infinite extension of u satisfies

(resp. violates) ¢:
ulE" @ iff forallte X¥suchthatu <t tkE ¢

ulE" ¢ iff forallt € ¥ suchthatu <t t}= ¢

6/26

Monitoring LTL

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation u.

Definition
A finite observation u permanently satisfies (resp. violates) ¢, if every infinite extension of u satisfies

(resp. violates) ¢:
ulE" @ iff forallte X¥suchthatu <t tkE ¢

ulE" ¢ iff forallt € ¥ suchthatu <t t}= ¢

ullzooooo

up E° O= up 2 O= un EOO=
upp E' O= up fEO= un L OO=

6/26

Monitors for LTL

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation u.

7/26

Monitors for LTL

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation u.

A monitor for a property ¢ is a computable function M, : ¥* — {v/, X, ?} that
decides a verdict for ¢ given a finite u.

7/26

Monitors for LTL

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation u.

A monitor for a property ¢ is a computable function M, : ¥* — {v/, X, ?} that
decides a verdict for ¢ given a finite u.

The monitor M,, is sound if

ulkEt e it My(u)=7, ukE’e it My(u) =X

7/26

Monitors for LTL

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation u.

A monitor for a property ¢ is a computable function M, : ¥* — {v/, X, ?} that
decides a verdict for ¢ given a finite u.

The monitor M,, is sound if
ulkEt e it My(u)=7, ukE’e it My(u) =X
The monitor M, is complete if

My(u)=vitulE ¢, Myu)=XifulE"p, My(u)="2olw.

7/26

Monitors for LTL

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation u.

A monitor for a property ¢ is a computable function M, : ¥* — {v/, X, ?} that
decides a verdict for ¢ given a finite u.

The monitor M,, is sound if
ulkEt e it My(u)=7, ukE’e it My(u) =X
The monitor M, is complete if

My(u)=vitulE ¢, Myu)=XifulE"p, My(u)="2olw.

Fact: every LTL formula has a sound and complete monitor.

7/26

Monitorability of LTL formulas

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation u.

2301 b&s Pr Uil F’év Pr

8/26

Monitorability of LTL formulas

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation u.

2301 b&s Pr Uil F’év Pr

Observation: u F=° ¢, and u =¥ ¢, for any u.

8/26

Monitorability of LTL formulas

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation u.

Ui b&s Pr Ui F’év Pr
Observation: u F=° ¢, and u =¥ ¢, for any u.

There’s no point in monitoring ¢, !

8/26

Monitorability of LTL formulas

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation u.

Ui b&s Pr Ui F’év Pr
Observation: u F=° ¢, and u =¥ ¢, for any u.

There’s no point in monitoring ¢, !

Definition (Pnueli & Zaks 2006)

A formula ¢ is (semantically) monitorable if every observation u has an
extension v = u, such that either v |=° p or v =7 .

8/26

LTL — Summary

trace/hyper

¢ Properties defined over individual traces.
= Properties describe sets of traces.
e Sound and complete monitors can be constructed for any
formula.
¢ Not every formula is monitorable. For example,
® safety and liveness properties are monitorable,
® recurrence properties (J<) are not.

" black/gray

9/26

LTL — Summary

¢ Properties defined over individual traces.
= Properties describe sets of traces.

e Sound and complete monitors can be constructed for any
formula.
¢ Not every formula is monitorable. For example,

® safety and liveness properties are monitorable,
® recurrence properties (J<) are not.

trace/hyper

" black/gray

[9] A.Pnueliand A. Zaks. PSL Model Checking and Run-time Verification via Testers., FM’06,
Springer, 2006.
[5] Y. Falcone, J-C. Fernandez, and L. Mounier. What can you verify and enforce at runtime?,
STTT 14(3), 2012.
[8] K. Havelund and D. Peled. Runtime Verification: From Propositional to First-Order Temporal
Logic. RV’'18, Springer, 2018.
. and many more!

9/26

Hyperproperties — HyperlLTL

trace/hyper

computability

black/gray

9/26

Hyperproperties — HyperlLTL

oy = VT NT.O(=0 — =) @ =V IO — =)

10/26

Hyperproperties — HyperlLTL

oy = VT NT.O(=0 — =) @ =V IO — =)

T={eececec=s- o} T1 = ¢u T1 = ¢a
Tzz{-- e e e e - } Tzl?éﬁpu TZ)ZQOLI

bbbooe . botbee ..}

10/26

Hyperproperties — HyperlLTL

Yy = VWVTD(‘ r —7> * 7_) Pg = Vﬂ'2|7'|:|< = - T)

TZZ{-- © o---...} Tz%sou Tz):sou
T3:{‘ c, = T, T3%Q0u T3%S0a
- e . ,“-‘ PEEEEY "..}
@ =V | Imp | Yu=ar| Y|P VY |OY YUY

MEar iff a € II(m)[0] T,I1 = Vm.p iff T.Ir >t Epforallt €T
Iy Vapy dff I orll =, T,I1 = 3m.p iff T,II[r — t] = pforsomet T
= iff I B o T,I =4 iff I =
I = Ovy iff I[l.] =y
MIEypLUY, iff for some i, I1[i, ..] = 42, and

forallj <iT,II[j,.] =41
10/26

Monitoring HyperLTL

oy =VTNT.O(=r — =7) Qo =V ITO(r = =)

11/26

Monitoring HyperLTL

oy = Vo VT.O(=r — =) Yo =VrITO(7 = =)

e Observation: the world today at 10am
Uy = (===}

11/26

Monitoring HyperLTL

oy =V NT.O(=07 = =7) g =V 3.0 > =)

e Observation: the world today at 10am
tho = {====}
e Update: the world at 11am

7 ceee)

11/26

Monitoring HyperLTL

oy = Vo VT.O(=r — =) Yo =VrITO(7 = =)

e Observation: the world today at 10am
tho = {====}
e Update: the world at 11am

Uy = {====- , - -}

11/26

Monitoring HyperLTL

oy =V NT.O(=07 = =7) g =V 3.0 > =)

e Observation: the world today at 10am
Uy = {====}

e Update: the world at 11am

U = {&eeee ; Soes, S}

o, |s there always coffee everywhere at the same time?

11/26

Monitoring HyperLTL

oy =V NT.O(=07 = =7) g =V 3.0 > =)

e Observation: the world today at 10am
Uy = {====}

e Update: the world at 11am

U = {&eeee ; Soes, S}

o, s there always coffee everywhere at the same time? U,y — ?,

11/26

Monitoring HyperLTL

oy =V NT.O(=07 = =7) g =V 3.0 > =)

e Observation: the world today at 10am
Uy = {====}

e Update: the world at 11am

U = {&eeee ; Soes, S}

o, Is there always coffee everywhere at the same time? U,y — ?, Uy — X

11/26

Monitoring HyperLTL

oy =V NT.O(=07 = =7) g =V 3.0 > =)

e Observation: the world today at 10am
Uy = {====}

e Update: the world at 11am

U = {&eeee ; eees, et}

o, |s there always coffee everywhere at the same time? U, g — ?, U;1n — X
o, s there always coffee somewhere? Upg — ?, U1 — ?

11/26

Monitoring HyperLTL

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation U.

12/26

Monitoring HyperLTL

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation U.

Definition
A finite observation U € Pyp(X*) permanently satisfies (resp. violates) ¢, if every infinite extension of
U satisfies (resp. violates) ¢:

UE ¢ iff forallT e P(X¥)suchthatU<T, TE ¢
UE"¢ iff forallT € P(Z)suchthatU < T, T [~ ¢

12/26

Monitoring HyperLTL

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation U.

Definition
A finite observation U € Pyp(X*) permanently satisfies (resp. violates) ¢, if every infinite extension of
U satisfies (resp. violates) ¢:

UE ¢ iff forallT e P(X¥)suchthatU<T, TE ¢
UE"¢ iff forallT € P(Z)suchthatU < T, T [~ ¢

Uy ={===== ; cees, o)

Uy [Y ¥ O(=r = =) U & Vr3r0(-r = =)
Uqq ‘:U VrVT.O(=r — =7) Un Fév Vo IrO(er = =)

12/26

Monitorability of HyperLTL formulas

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation U.

Uy = {eeees =, ceee e}

©q =Vr.IT.O(r — =) U1 q U1 FE° ¢a

13/26

Monitorability of HyperLTL formulas

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation U.

Un = {===m——e, !

©q =Vr.IT.O(r — =) U1 q U1 FE° ¢a

Observation: U ~° ¢, and U =Y ¢, for any U.

13/26

Monitorability of HyperLTL formulas

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation U.

Un = {===m——e, !

e =V 3r.O(o = =) U1 q U1 FE° ¢a

Observation: U ~° ¢, and U =Y ¢, for any U.

There’s no point in monitoring v, !

13/26

Monitorability of HyperLTL formulas

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation U.

Un = {===m——e, !

e =V 3r.O(o = =) U1 q U Y ¢

Observation: U ~° ¢, and U =Y ¢, for any U.

There’s no point in monitoring v, !

Definition (Agrawal & Bonakdarpour 2016)

A formula ¢ is (semantically) monitorable if every observation U has an
extension V = U, such that V =° o or V =7 ¢.

13/26

HyperLTL — Summary

trace/hyper

* Properties defined over sets of traces.
= Properties describe sets of sets of traces.
e Sound and complete monitors can be constructed for some
formulas.
* For example, for formulas without quantifier alternations.
e But what about formulas with alternations?
* Most formulas are not monitorable.
® For example, V™3 -properties are not!

i/ black/gray

14/26

HyperLTL — Summary

trace/hyper

e Properties defined over sets of traces.) 7
= Properties describe sets of sets of traces. o {
e Sound and complete monitors can be constructed for some | | blackgray
formulas.
* For example, for formulas without quantifier alternations.
e But what about formulas with alternations?
* Most formulas are not monitorable.
® For example, V™3 -properties are not!

[1] S. Agrawal and B. Bonakdarpour. Runtime Verification of k-Safety Hyperproperties in
HyperLTL. CSF’16, IEEE CS Press, 2016.

[8] K. Havelund and D. Peled. Runtime Verification: From Propositional to First-Order Temporal
Logic. RV’'18, Springer, 2018.

[7] C. Hahn. Algorithms for Monitoring Hyperproperties. RV’'19, Springer, 2019.
14/26

Gray-box monitoring (of hyperproperties)

trace/hyper

black/gray

computability

14/26

Why is , not monitorable?

Theorem
Letp, =Vn.3r.0(» = =,). ThenU ~° ¢, and U [£° o, for all U € Pgp(X*).

15/26

Why is , not monitorable?

Theorem
Let p, =Vrn.3r.0(» —» =7). Then U [£° ¢, and U ° ¢, for all U € Pyp(Z).

Proof.
U e, U=<X3X¥ and X¥ = ¢, because = == ... ¢ ¥¥;

15/26

Why is , not monitorable?

Theorem
Let p, =Vrn.3r.0(» —» =7). Then U [£° ¢, and U ° ¢, for all U € Pyp(Z).

Proof.
U e, U=<X3X¥ and X¥ = ¢, because = == ... ¢ ¥¥;
U ¢, defineTasT={te X’ |w=u .-« foru e U}

then U <X T and T }£ ¢,. O

15/26

Why is , not monitorable?
Theorem

Let p, =Vrn.3r.0(» —» =7). Then U [£° ¢, and U ° ¢, for all U € Pyp(Z).

Proof.
UK @, U=X and ¢ |= ¢, because === ... ¢ ¥,
U ¢, defineTasT={te X’ |w=u .-« foru e U}

then U <X T and T }£ ¢,.]

This theorem can be generalized to all formulas ¢ = Vr.37.0P(w, 7) where P is
® abinary (non-temporal) predicate,
® serial,
e non-reflexive.

15/26

Why is , not monitorable?

Theorem
Let p, =Vrn.3r.0(» —» =7). Then U [£° ¢, and U ° ¢, for all U € Pyp(Z).

Proof.
UK @, U=X and ¢ |= ¢, because === ... ¢ ¥,
U ¢, defineTasT={te X’ |w=u .-« foru e U}

then U <X T and T }£ ¢,.]

This theorem can be generalized to all formulas ¢ = Vr.37.0P(w, 7) where P is
® abinary (non-temporal) predicate,
® serial,
e non-reflexive.

OK, but let’s have a closer look at this proof. ..
15/26

Why is ¢, not monitorable?
Theorem

Proof.

Letp, =Vn.3r.0(= » = =;). ThenU £° v, and U £° ¢, for all U € P (X*).
U £ ¢

==
This step is somewhat dubious.

D¢

16/26

Why is , not monitorable?
Theorem

Proof.

Letp, =Vn.3r.0(= » = =;). ThenU £° v, and U £° ¢, for all U € P (X*).
u b&v Pa

Sow
This step is somewhat dubious.

¢ Realistic systems don’t realize every possible trace.

16/26

Why is , not monitorable?
Theorem
Letp, =Vn.3r.0(= » = =;). ThenU £° v, and U £° ¢, for all U € P (X*).

Proof.
U p, U=%Y and 3 = ¢, because = = = ... € ¥¢¥;

This step is somewhat dubious.
¢ Realistic systems don't realize every possible trace.
¢ There is only a finite number of coffee dispensers in the world (sadly).

16/26

Why is , not monitorable?
Theorem
Letp, =Vn.3r.0(= » = =;). ThenU £° v, and U £° ¢, for all U € P (X*).

Proof.
U p, U=%Y and 3 = ¢, because = = = ... € ¥¢¥;

This step is somewhat dubious.
¢ Realistic systems don't realize every possible trace.
¢ There is only a finite number of coffee dispensers in the world (sadly).
When monitoring hyperproperties, wed like to take into account

some information about the system
(gray-box monitoring).

16/26

Gray-box monitoring of HyperLTL properties
Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation U.

Definition

A finite observation U € Pyr(X*) permanently satisfies (resp. violates) ¢,
if every infinite extension of U satisfies (resp. violates) :

UE e iff forallTeP(S¥)suchthatU < T, TE ¢
Uk iff forallT e P(X*)suchthatU < T, T [~ ¢

17/26

Gray-box monitoring of HyperLTL properties
Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation U of a system S.

Definition

A finite observation U € Pyr(X*) permanently satisfies (resp. violates) ¢,
if every infinite extension of U satisfies (resp. violates) :

UE e iff forallTeP(S¥)suchthatU < T, TE ¢
Uk iff forallT e P(X*)suchthatU < T, T [~ ¢

17/26

Gray-box monitoring of HyperLTL properties

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation U of a system S.

Definition
Given a set of system behaviors S C P(X*),

a finite observation U € Py,(X*) permanently satisfies (resp. violates) ¢,
if every infinite extension of U in S satisfies (resp. violates) ¢:

Uks e iff forallT e SsuchthatU <T,T | ¢
UkEs e iff forallTe SsuchthatU < T, T [~ ¢

17/26

Gray-box monitoring of HyperLTL properties

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation U of a system S.

Definition
Given a set of system behaviors S C P(X*),

a finite observation U € Py,(X*) permanently satisfies (resp. violates) ¢,
if every infinite extension of U in S satisfies (resp. violates) ¢:

Uks e iff forallT e SsuchthatU <T,T | ¢
UkEs e iff forallTe SsuchthatU < T, T [~ ¢

S={TeP(*)||T|=3} U={s=crr, commc, meec)

U vr3rO(r — =) UEVYr3rO(n = =)

17/26

Gray-box monitoring in general

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation O of a system S.

Definition
Given a set of system behaviors S C B,

a finite observation O € O permanently satisfies (resp. violates) ¢,
if every infinite extension of O in S satisfies (resp. violates) ¢:

OEs ¢y iff forallBe SsuchthatO <B,BE ¢
O 5 ¢ iff forallBe Ssuchthat O < B, B [~ ¢

18/26

Gray-box monitoring in general

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation O of a system S.

Definition
Given a set of system behaviors S C B,

a finite observation O € O permanently satisfies (resp. violates) ¢,
if every infinite extension of O in S satisfies (resp. violates) ¢:

OEs ¢y iff forallBe SsuchthatO <B,BE ¢
O 5 ¢ iff forallBe Ssuchthat O < B, B [~ ¢

A formula ¢ is semantically gray-box monitorable for a system S if every
observation O has an extension P = O in S, such that P =% ¢ or P =% .

18/26

Gray-box monitors for V"3 -properties

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation O of a system S.

19/26

Gray-box monitors for V"3 -properties

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation O of a system S.

A monitor for a property ¢ and a system S is a computable function
M,s: O — {/,X,?} that decides a verdict for ¢ given a finite O in S.

19/26

Gray-box monitors for V"3 -properties

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation O of a system S.

A monitor for a property ¢ and a system S is a computable function
M,s: O — {/,X,?} that decides a verdict for ¢ given a finite O in S.

Assuming ¢ = Vr.37.¢(m, 7), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T > U of a given U permanently violate .

19/26

Gray-box monitors for V"3 -properties

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation O of a system S.

A monitor for a property ¢ and a system S is a computable function
M,s: O — {/,X,?} that decides a verdict for ¢ given a finite O in S.

Assuming ¢ = Vr.37.¢(m, 7), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T > U of a given U permanently violate .

Example: ¢, = Vr.3r.0(7 — =) S={TeP(X¥)||T| =3}

19/26

Gray-box monitors for V"3 -properties

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation O of a system S.

A monitor for a property ¢ and a system S is a computable function
M,s: O — {/,X,?} that decides a verdict for ¢ given a finite O in S.

Assuming ¢ = Vr.37.¢(m, 7), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T > U of a given U permanently violate .

Example: ¢, = Vr.3r.0(7 — =) S={TeP(X¥)||T| =3}
Negate ¢,: —p, = Ir.~Ir.0(7 — =)

19/26

Gray-box monitors for V"3 -properties

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation O of a system S.

A monitor for a property ¢ and a system S is a computable function
M,s: O — {/,X,?} that decides a verdict for ¢ given a finite O in S.

Assuming ¢ = Vr.37.¢(m, 7), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T > U of a given U permanently violate .

Example: ¢, =Vr.3r.0(=n — =) S={TeP(X¥)||T| =3}
Negate ¢,: —p, = Ir.~Ir.0(7 — =) instantiate

19/26

Gray-box monitors for V"3 -properties

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation O of a system S.

A monitor for a property ¢ and a system S is a computable function
M,s: O — {/,X,?} that decides a verdict for ¢ given a finite O in S.

Assuming ¢ = Vr.37.¢(m, 7), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T > U of a given U permanently violate .

Example: ¢, = Vr.3r.0(7 — =) S={TeP(X¥)||T| =3}
Negate ¢,: —p, = Ir.~Ir.0(7 — =) instantiate solve

19/26

Gray-box monitors for V"3 -properties

Monitoring: decide whether a given property ¢ is permanently satisfied (v),
violated (X), or neither (?), given a finite observation O of a system S.

A monitor for a property ¢ and a system S is a computable function
M,s: O — {/,X,?} that decides a verdict for ¢ given a finite O in S.

Assuming ¢ = Vr.37.¢(m, 7), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T > U of a given U permanently violate .
Example: ¢, = Vr.3r.0(7 — =) S={TeP(X¥)||T| =3}

Negate ¢,: —p, = Ir.~Ir.0(7 — =) instantiate solve

I -} s {m— - m——}
{&See,) S S

)

19/26

Gray-box monitoring — Summary

® Properties defined over observations (e.g. traces or sets of
traces).
= Properties describe sets of observations.
e Sound and complete monitors can be constructed for some
formulas.
® For example, for formulas without quantifier alternations (as
for black-box).
e But also for V3 -formulas when S imposes enough
constraints.
* Monitorability of formulas depends on set of valid system
behaviors S.
e For example, V*3*-properties are monitorable for some
choices of S.
* We will see a more interesting example later. ..

trace/hyper

" black/gray

20/26

Undecidable hyperproperties

trace/hyper

computability

black/gray

20/26

Monitorability is not existence of monitors

A formula ¢ is semantically gray-box monitorable for a system S if every
observation O has an extension P = O in S, such that P =% ¢ or P =% ¢.

21/26

Monitorability is not existence of monitors

A formula ¢ is semantically gray-box monitorable for a system S if every
observation O has an extension P = O in S, such that P =% ¢ or P =% ¢.

A monitor for a property ¢ and a system S is a computable function
M, s: O{/, X, ?} that decides a verdict for ¢ given a finite u.

21/26

Monitorability is not existence of monitors

A formula ¢ is semantically gray-box monitorable for a system S if every
observation O has an extension P = O in S, such that P =% ¢ or P =% ¢.

A monitor for a property ¢ and a system S is a computable function
M, s: O{/, X, ?} that decides a verdict for ¢ given a finite u.

Observation: Monitorability of ¢ in S does not guarantee the existence of a sound
and complete monitor M, s.

21/26

Monitorability is not existence of monitors

A formula ¢ is semantically gray-box monitorable for a system S if every
observation O has an extension P = O in S, such that P =% ¢ or P =% ¢.

A monitor for a property ¢ and a system S is a computable function
M, s: O{/, X, ?} that decides a verdict for ¢ given a finite u.

Observation: Monitorability of ¢ in S does not guarantee the existence of a sound
and complete monitor M, s.

Example: Let T be some Turing machine.
S ={teX¥|t; = the state of T after i steps}, ¢ = Ohalt.

Because T is deterministic, either u |=5% ¢ or u |=% ¢, for any u in S.

21/26

Monitorability is not existence of monitors

A formula ¢ is semantically gray-box monitorable for a system S if every
observation O has an extension P = O in S, such that P =% ¢ or P =% ¢.

A monitor for a property ¢ and a system S is a computable function
M, s: O{/, X, ?} that decides a verdict for ¢ given a finite u.

Observation: Monitorability of ¢ in S does not guarantee the existence of a sound
and complete monitor M, s.

Example: Let T be some Turing machine.
S ={teX¥|t; = the state of T after i steps}, ¢ = Ohalt.
Because T is deterministic, either u |=5% ¢ or u |=% ¢, for any u in S.

= (is monitorable in S;

21/26

Monitorability is not existence of monitors

A formula ¢ is semantically gray-box monitorable for a system S if every
observation O has an extension P = O in S, such that P =% ¢ or P =% ¢.

A monitor for a property ¢ and a system S is a computable function
M, s: O{/, X, ?} that decides a verdict for ¢ given a finite u.

Observation: Monitorability of ¢ in S does not guarantee the existence of a sound
and complete monitor M, s.

Example: Let T be some Turing machine.
S ={teX¥|t; = the state of T after i steps}, ¢ = Ohalt.

Because T is deterministic, either u |=5% ¢ or u |=% ¢, for any u in S.
= (is monitorable in S;
= but there is no sound and complete monitor M, s.

21/26

Monitorability is not existence of monitors

A formula ¢ is semantically gray-box monitorable for a system S if every
observation O has an extension P = O in S, such that P =% ¢ or P =% ¢.

A monitor for a property ¢ and a system S is a computable function
M, s: O{/, X, ?} that decides a verdict for ¢ given a finite u.

Observation: Monitorability of ¢ in S does not guarantee the existence of a sound
and complete monitor M, s.

Example: Let T be some Turing machine.
S ={teX¥|t; = the state of T after i steps}, ¢ = Ohalt.

Because T is deterministic, either u |=5% ¢ or u |=% ¢, for any u in S.
= (is monitorable in S;
= there is a sound monitor M, s that only answers v/ or ?!

21/26

Case study: distributed data minimality

trace/hyper

computability

black/gray

21/26

Non-monitorable examples
Storage limitation (Article 5): Personal data shall be [...]

adequate relevant, and limited to what Is necessary In relation to the purposes for
which they are processed (data minimization) [...]

Data minimization (attempt at formalization)
collect (data,dataid,dsid) IMPLIES EVENTUALLY use(data, dataid, dsid)

But MFOTL semantics requires collected data used in EVERY run of the system
— Not finitely falsifiable (liveness) and Interpretation s also oo sirong
— Example: when booking a long-haul flight, customers provide emergency contact

for an account. In majority of cases, data is collected, not used, and deleted

Better would be a CTL formulation (although not monitorable on a trace)
collect (data, dataids, dsid) IMPLIES EXISTS EVENTUALLY use(data, datald, dsid)

Slide by David Basin, Can we Verify GDPR Compliance?, RV’19 keynote.

21/26

Case study: distributed data minimality

¢ Distributed data minimality (DDM)
® privacy property (GDPR)
® generalization of data minimality to a multi-input setting
® \W33-hyperproperty

0; = Vr.vr' 3Ir 3. —same(m, 7)) — <

same;(m,) A same; (7', 7') A
almost; (7, 7") A = output(r, 1)

22/26

Case study: distributed data minimality

¢ Distributed data minimality (DDM)
® privacy property (GDPR)
® generalization of data minimality to a multi-input setting
® \W33-hyperproperty

0; = Vr.vr' 3Ir 3. —same(m, 7)) — <

same;(m,) A same; (7', 7') A
almost; (7, 7") A = output(r, 1)

e Challenges:

* Not black-box monitorable.
¢ Undecidable.
* Defined over arbitrary domains/datatypes.

22/26

Case study: distributed data minimality

¢ Distributed data minimality (DDM)
® privacy property (GDPR)
® generalization of data minimality to a multi-input setting
® Yw33-hyperproperty
. , /\ X /’ / /\
0; = Vr.vr' 3Ir 3. —same(m, 7)) — same;(T,) samei(r’,) ,
almost; (7, 7") A ~output(r, 7')
e Challenges:

* Not black-box monitorable.
¢ Undecidable.
* Defined over arbitrary domains/datatypes.

Yet, we have a monitor. ..

22/26

Case study: distributed data minimality

¢ Distributed data minimality (DDM)
® privacy property (GDPR)
® generalization of data minimality to a multi-input setting
® Yw33-hyperproperty
. , /\ X /’ / /\
0; = Vr.vr' 3Ir 3. —same(m, 7)) — same;(T,) samei(r’,) ,
almost; (7, 7") A ~output(r, 7')
e Challenges:

* Not black-box monitorable.
¢ Undecidable.
* Defined over arbitrary domains/datatypes.

Yet, we have a monitor. ..
here’s how. ..

22/26

Distributed data minimality

Definition (Antignac, Sands & Schneider, 2017)

A function f is distributed data-minimal (DDM) if, for all input positions k and all
x,y € Iy such that x # y, there is some z € I, such that f(z[k — x]) # f(z[k — y]).

23/26

Distributed data minimality

same; (7, 7) A same; (7', 7') A
Y = Vo' 3r.3r. ﬁsamei(ﬁ,ﬂ’) N (1() z())

almost;(7,7") A = output(r, 7’)

o = Nevwn SE={@nf0=y, S§=PE})

23/26

Distributed data minimality

same; (7, 7) A same; (7', 7') A
Y = Vo' 3r.3r. ﬂsamei(ﬂﬂr’) - (1() z())

almost;(7,7") A = output(r, 7’)

am = N SE={@n)|f0 =y} §=PE})

Using the generalized framework
¢ Set of observable behaviors O = E}# are valid function applications.

23/26

Distributed data minimality

same; (7, 7) A same; (7', 7') A
Y = Vo' 3r.3r. ﬂsamei(ﬂﬂr’) - (1() z())

almost;(7,7") A = output(r, 7’)
am = Ny i S ={cy) [f0 =y}, S§=PE])
Using the generalized framework

¢ Set of observable behaviors O = E}# are valid function applications.
¢ Not black-box monitorable.

23/26

Distributed data minimality

same; (7, 7) A same; (7', 7') A
Y = Vo' 3r.3r. ﬂsamei(ﬂﬂr’) - (1() z())

almost;(7,7") A = output(r, 7’)
am = Ny i S ={cy) [f0 =y}, S§=PE])
Using the generalized framework

¢ Set of observable behaviors O = E}# are valid function applications.
¢ Not black-box monitorable, but gray-box monitorable (thanks to S).

23/26

A sound monitor for distributed data minimality

same; (7, 7) A same; (7', 7') A
Y = Vo' 3r.3r. _'S&mei(WﬂT,) N (1() z())

almost;(7,7") A = output(r, 7')

pam = Nevwn SE={@nf0=y, S§=PE})

24/26

A sound monitor for distributed data minimality

same; (7, 7) A same; (7', 7') A
Y = Vo' 3r.3r. ﬂsamei(ﬂﬂr’) N (1() z())

almost;(7,7") A = output(r, 7')

pam = Nevwn SE={@nf0=y, S§=PE})

We build a monitor
? if f(uin) # uou for some u € U,

Mam(U) = ? if /\?:1 /\u,u’euNf,i(proji(”in)aProji(“;’n)) # X,
X otherwise.

24/26

A sound monitor for distributed data minimality

same; (7, 7) A same; (7', 7') A
Y = Vo' 3r.3r. ﬂsamei(ﬂﬂr’) - (1() z())

almost;(7,7") A = output(r, 7')

pam = Nevwn SE={@nf0=y, S§=PE})

We build a monitor
? if f(uin) # uou for some u € U,

Mdm(u) =q? if /\?:1 /\u,u’eUNf,i(prOji(uin)a proji(u;’n)) 7& X,
X otherwise.

using an oracle Ny ;(x,y) (implemented as symbolic execution + SMT solver):

vor? if3zelf(zli— x]) #f(z[i = y]),
X or ? otherwise.

Nf,i(x>y) = {

24/26

A sound monitor for distributed data minimality

We build a monitor

? if f(uin) # uou for some u € U,

Mdm(u) =<¢? if /\?:1 /\u,u’euNf,i(Pl"Oji(”in)a proji(u;n)) ?é X7
X otherwise.

using an oracle Ny ;(x,y) (implemented as symbolic execution + SMT solver):

vor? if3zelf(zlir x)) #f(z[i — yl]),
X or ? otherwise.

Nf,i(xvy) = {

The monitor is sound but not complete.

24/26

Try it out!

o) E

https://github.com/sstucki/minion/

25/26

https://github.com/sstucki/minion/

Thank you!

Coauthors

UNIVERSITY OF
GOTHENBURG

e César Sanchez, IMDEA SW
® Borzoo Bonakdarpour, ISU
e Gerardo Schneider, GU/Chalmers

CHALMERS

UNIVERSITY OF TECHNOLOGY

I dea

IOWA STATE
UNIVERSITY

Checkout the minion monitor for data minimality

O https://github.com/sstucki/minion/

26/26

https://github.com/sstucki/minion/

@ Shreya Agrawal and Borzoo Bonakdarpour.
Runtime verification of k-safety hyperproperties in HyperLTL.
In Proc. of the IEEE 29th Computer Security Foundations (CSF’16), pages
239-252. IEEE CS Press, 2016.

[Andreas Bauer, Martin Leucker, and Chrisitan Schallhart.
Runtime verification for LTL and TLTL.
ACM T. Softw. Eng. Meth., 20(4):14, 2011.

[Andreas Bauer, Martin Leucker, and Christian Schallhart.
The good, the bad, and the ugly—but how ugly is ugly?
In Proc. of the 7th Int'| Workshop on Runtime Verification (RV'07), volume
4839 of LNCS, pages 126—138. Springer, 2007.

[3 Borzoo Bonakdarpour, César Sanchez, and Gerardo Schneider.
Monitoring hyperproperties by combining static analysis and runtime
verification.

26/26

In Proc. of the 8th Int'| Symp. on Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA’2018). Verification. Part I, volume 11245 of
LNCS, pages 8-27. Springer, 2018.

Yliés Falcone, Jean-Claude Fernandez, and Laurent Mounier.

What can you verify and enforce at runtime?

International Journal on Software Tools for Technology Transfer (STTT),
14(3):349-382, 2012.

Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup.
Monitoring hyperproperties.

In Proc. of 17th Int’'l Conf. on Runtime Verification (RV’17), volume 10548 of
LNCS, pages 190-207. Springer, 2017.

Christopher Hahn.

Algorithms for monitoring hyperproperties.

In Bernd Finkbeiner and Leonardo Mariani, editors, Runtime Verification,
pages 70-90, Cham, 2019. Springer International Publishing.

] = -

26/26

[Klaus Havelund and Doron Peled.
Runtime verification: From propositional to first-order temporal logic.
In Proc. of the 18th Int’l Conf. on Runtime Verification (RV’18), volume 11237
of LNCS, pages 90-112. Springer, 2018.

@ Amir Pnueli and Aleksandr Zaks.
PSL model checking and run-time verification via testers.
In Proc. of the 14th Int'| Symp on Formal Methods (FM’06), volume 4085 of
LNCS, pages 573-586. Springer, 2006.

[@ Xian Zhang, Martin Leucker, and Wei Dong.
Runtime verification with predictive semantics.
In Proc. of 4th NASA Int’'| Symp on Formal Methods (NFM’12), volume 7226 of
LNCS, pages 418-432. Springer, 2012.

26/26

Except where otherwise noted, this work is licensed under

http://creativecommons.org/licenses/by/3.0/

26/26

http://creativecommons.org/licenses/by/3.0/

