
Gray-box Monitorability of Hyperproperties
The Case of Data Minimality

Sandro Stucki

University of Gothenburg | Chalmers, Sweden

RV Lectures @ ICTAC’20 – 30 Nov & 1 Dec 2020

sandro.stucki@gu.se @stuckintheory

1

sandro.stucki@gu.se
@stuckintheory

The monitorability cube

trace/hyper

black/gray

computability

[1, 4, 9]

[2, 3,
6, 7,
10]

[12]

2

Motivation: distributed data minimality

• Distributed data minimality (DDM)
• privacy property (GDPR)
• generalization of data minimality to a multi-input setting

• ∀∀∃∃-hyperproperty

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
• Challenges:

• Not black-box monitorable.
• Undecidable.
• Defined over arbitrary domains/datatypes.

Yet, we have a monitor. . .
what’s going on here?

3

Motivation: distributed data minimality

• Distributed data minimality (DDM)
• privacy property (GDPR)
• generalization of data minimality to a multi-input setting
• ∀∀∃∃-hyperproperty

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)

• Challenges:
• Not black-box monitorable.
• Undecidable.
• Defined over arbitrary domains/datatypes.

Yet, we have a monitor. . .
what’s going on here?

3

Motivation: distributed data minimality

• Distributed data minimality (DDM)
• privacy property (GDPR)
• generalization of data minimality to a multi-input setting
• ∀∀∃∃-hyperproperty

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
• Challenges:

• Not black-box monitorable.
• Undecidable.
• Defined over arbitrary domains/datatypes.

Yet, we have a monitor. . .
what’s going on here?

3

Motivation: distributed data minimality

• Distributed data minimality (DDM)
• privacy property (GDPR)
• generalization of data minimality to a multi-input setting
• ∀∀∃∃-hyperproperty

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
• Challenges:

• Not black-box monitorable.
• Undecidable.
• Defined over arbitrary domains/datatypes.

Yet, we have a monitor. . .

what’s going on here?

3

Motivation: distributed data minimality

• Distributed data minimality (DDM)
• privacy property (GDPR)
• generalization of data minimality to a multi-input setting
• ∀∀∃∃-hyperproperty

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
• Challenges:

• Not black-box monitorable.
• Undecidable.
• Defined over arbitrary domains/datatypes.

Yet, we have a monitor. . .
what’s going on here?

3

Trace properties – LTL

trace/hyper

black/gray

computability

3

3

Monitoring LTL

ϕs =  ϕl = ϕr = 

• Observation: the world today at 10am

u10 =

• Update: the world at 11am

u11 =

ϕs Is there always coffee? u10 → ? , u11 → 7

ϕl Is there eventually coffee? u10 → 3, u11 → 3

ϕr Is there always eventually coffee? u10 → ? , u11 → ?

A monitor for a property ϕ is a computable function Mϕ : Σ∗ → {3,7,?} that
decides whether a given property ϕ is permanently satisfied (3), violated (7), or
neither (?), given a finite observation u.

4

Monitoring LTL

ϕs =  ϕl = ϕr = 

• Observation: the world today at 10am

u10 =

• Update: the world at 11am

u11 =

ϕs Is there always coffee? u10 → ? , u11 → 7

ϕl Is there eventually coffee? u10 → 3, u11 → 3

ϕr Is there always eventually coffee? u10 → ? , u11 → ?

A monitor for a property ϕ is a computable function Mϕ : Σ∗ → {3,7,?} that
decides whether a given property ϕ is permanently satisfied (3), violated (7), or
neither (?), given a finite observation u.

4

Monitoring LTL

ϕs =  ϕl = ϕr = 

• Observation: the world today at 10am

u10 =

• Update: the world at 11am

u11 =

ϕs Is there always coffee? u10 → ? , u11 → 7

ϕl Is there eventually coffee? u10 → 3, u11 → 3

ϕr Is there always eventually coffee? u10 → ? , u11 → ?

A monitor for a property ϕ is a computable function Mϕ : Σ∗ → {3,7,?} that
decides whether a given property ϕ is permanently satisfied (3), violated (7), or
neither (?), given a finite observation u.

4

Monitoring LTL

ϕs =  ϕl = ϕr = 

• Observation: the world today at 10am

u10 =

• Update: the world at 11am

u11 =

ϕs Is there always coffee?

u10 → ? , u11 → 7

ϕl Is there eventually coffee? u10 → 3, u11 → 3

ϕr Is there always eventually coffee? u10 → ? , u11 → ?

A monitor for a property ϕ is a computable function Mϕ : Σ∗ → {3,7,?} that
decides whether a given property ϕ is permanently satisfied (3), violated (7), or
neither (?), given a finite observation u.

4

Monitoring LTL

ϕs =  ϕl = ϕr = 

• Observation: the world today at 10am

u10 =

• Update: the world at 11am

u11 =

ϕs Is there always coffee? u10 → ?

, u11 → 7

ϕl Is there eventually coffee? u10 → 3, u11 → 3

ϕr Is there always eventually coffee? u10 → ? , u11 → ?

A monitor for a property ϕ is a computable function Mϕ : Σ∗ → {3,7,?} that
decides whether a given property ϕ is permanently satisfied (3), violated (7), or
neither (?), given a finite observation u.

4

Monitoring LTL

ϕs =  ϕl = ϕr = 

• Observation: the world today at 10am

u10 =

• Update: the world at 11am

u11 =

ϕs Is there always coffee? u10 → ? , u11 → 7

ϕl Is there eventually coffee? u10 → 3, u11 → 3

ϕr Is there always eventually coffee? u10 → ? , u11 → ?

A monitor for a property ϕ is a computable function Mϕ : Σ∗ → {3,7,?} that
decides whether a given property ϕ is permanently satisfied (3), violated (7), or
neither (?), given a finite observation u.

4

Monitoring LTL

ϕs =  ϕl = ϕr = 

• Observation: the world today at 10am

u10 =

• Update: the world at 11am

u11 =

ϕs Is there always coffee? u10 → ? , u11 → 7

ϕl Is there eventually coffee? u10 → 3, u11 → 3

ϕr Is there always eventually coffee? u10 → ? , u11 → ?

A monitor for a property ϕ is a computable function Mϕ : Σ∗ → {3,7,?} that
decides whether a given property ϕ is permanently satisfied (3), violated (7), or
neither (?), given a finite observation u.

4

Monitoring LTL

ϕs =  ϕl = ϕr = 

• Observation: the world today at 10am

u10 =

• Update: the world at 11am

u11 =

ϕs Is there always coffee? u10 → ? , u11 → 7

ϕl Is there eventually coffee? u10 → 3, u11 → 3

ϕr Is there always eventually coffee? u10 → ? , u11 → ?

A monitor for a property ϕ is a computable function Mϕ : Σ∗ → {3,7,?} that
decides whether a given property ϕ is permanently satisfied (3), violated (7), or
neither (?), given a finite observation u.

4

Monitoring LTL

ϕs =  ϕl = ϕr = 

• Observation: the world today at 10am

u10 =

• Update: the world at 11am

u11 =

ϕs Is there always coffee? u10 → ? , u11 → 7

ϕl Is there eventually coffee? u10 → 3, u11 → 3

ϕr Is there always eventually coffee? u10 → ? , u11 → ?

A monitor for a property ϕ is a computable function Mϕ : Σ∗ → {3,7,?} that
decides whether a given property ϕ is permanently satisfied (3), violated (7), or
neither (?), given a finite observation u.

4

LTL – Summary

• Properties defined over individual traces.
⇒ Properties describe sets of traces.
• Perfect monitors can be constructed for any formula.
• Not every formula is monitorable. For example,

• safety and liveness properties are monitorable,
• recurrence properties () are not.

trace/hyper

black/gray

computability

[10] A. Pnueli and A. Zaks. PSL Model Checking and Run-time Verification via Testers., FM’06,
Springer, 2006.

[6] Y. Falcone, J-C. Fernandez, and L. Mounier. What can you verify and enforce at runtime?,
STTT 14(3), 2012.

[9] K. Havelund and D. Peled. Runtime Verification: From Propositional to First-Order Temporal
Logic. RV’18, Springer, 2018.

. . . and many more!

5

LTL – Summary

• Properties defined over individual traces.
⇒ Properties describe sets of traces.
• Perfect monitors can be constructed for any formula.
• Not every formula is monitorable. For example,

• safety and liveness properties are monitorable,
• recurrence properties () are not.

trace/hyper

black/gray

computability

[10] A. Pnueli and A. Zaks. PSL Model Checking and Run-time Verification via Testers., FM’06,
Springer, 2006.

[6] Y. Falcone, J-C. Fernandez, and L. Mounier. What can you verify and enforce at runtime?,
STTT 14(3), 2012.

[9] K. Havelund and D. Peled. Runtime Verification: From Propositional to First-Order Temporal
Logic. RV’18, Springer, 2018.

. . . and many more!

5

Hyperproperties – HyperLTL

trace/hyper

black/gray

computability

5

Hyperproperties – HyperLTL

ϕu = ∀π.∀τ.(π → τ) ϕa = ∀π.∃τ.(π → τ)

T1 = { · · ·} T1 |= ϕu T1 |= ϕa

T2 = { · · · , · · ·} T2 6|= ϕu T2 |= ϕa

T3 = { · · · , · · · , T3 6|= ϕu T3 6|= ϕa

· · · , · · · , . . . }

ϕ ::= ∀π.ϕ
∣∣ ∃π.ϕ ∣∣ψ ψ ::= aπ

∣∣¬ψ ∣∣ψ ∨ ψ ∣∣ψ ∣∣ψ U ψ
Π |= aπ iff a ∈ Π(π)[0]
Π |= ψ1 ∨ ψ2 iff Π |= ψ1 or Π |= ψ2
Π |= ¬ψ iff Π 6|= ψ
Π |= ψ iff Π[1..] |= ψ
Π |= ψ1 U ψ2 iff for some i, Π[i, ..] |= ψ2, and

for all j < i T,Π[j, ..] |= ψ1

T,Π |= ∀π.ϕ iff T,Π[π 7→ t] |= ϕ for all t ∈ T
T,Π |= ∃π.ϕ iff T,Π[π 7→ t] |= ϕ for some t ∈ T
T,Π |= ψ iff Π |= ψ

6

Hyperproperties – HyperLTL

ϕu = ∀π.∀τ.(π → τ) ϕa = ∀π.∃τ.(π → τ)

T1 = { · · ·} T1 |= ϕu T1 |= ϕa

T2 = { · · · , · · ·} T2 6|= ϕu T2 |= ϕa

T3 = { · · · , · · · , T3 6|= ϕu T3 6|= ϕa

· · · , · · · , . . . }

ϕ ::= ∀π.ϕ
∣∣ ∃π.ϕ ∣∣ψ ψ ::= aπ

∣∣¬ψ ∣∣ψ ∨ ψ ∣∣ψ ∣∣ψ U ψ
Π |= aπ iff a ∈ Π(π)[0]
Π |= ψ1 ∨ ψ2 iff Π |= ψ1 or Π |= ψ2
Π |= ¬ψ iff Π 6|= ψ
Π |= ψ iff Π[1..] |= ψ
Π |= ψ1 U ψ2 iff for some i, Π[i, ..] |= ψ2, and

for all j < i T,Π[j, ..] |= ψ1

T,Π |= ∀π.ϕ iff T,Π[π 7→ t] |= ϕ for all t ∈ T
T,Π |= ∃π.ϕ iff T,Π[π 7→ t] |= ϕ for some t ∈ T
T,Π |= ψ iff Π |= ψ

6

Hyperproperties – HyperLTL

ϕu = ∀π.∀τ.(π → τ) ϕa = ∀π.∃τ.(π → τ)

T1 = { · · ·} T1 |= ϕu T1 |= ϕa

T2 = { · · · , · · ·} T2 6|= ϕu T2 |= ϕa

T3 = { · · · , · · · , T3 6|= ϕu T3 6|= ϕa

· · · , · · · , . . . }

ϕ ::= ∀π.ϕ
∣∣ ∃π.ϕ ∣∣ψ ψ ::= aπ

∣∣¬ψ ∣∣ψ ∨ ψ ∣∣ψ ∣∣ψ U ψ
Π |= aπ iff a ∈ Π(π)[0]
Π |= ψ1 ∨ ψ2 iff Π |= ψ1 or Π |= ψ2
Π |= ¬ψ iff Π 6|= ψ
Π |= ψ iff Π[1..] |= ψ
Π |= ψ1 U ψ2 iff for some i, Π[i, ..] |= ψ2, and

for all j < i T,Π[j, ..] |= ψ1

T,Π |= ∀π.ϕ iff T,Π[π 7→ t] |= ϕ for all t ∈ T
T,Π |= ∃π.ϕ iff T,Π[π 7→ t] |= ϕ for some t ∈ T
T,Π |= ψ iff Π |= ψ

6

Hyperproperties – Relational HyperLTL

The temperature difference between two sensors never exceeds 5 ◦C.

ϕt = ∀π.∀τ.(|tπ − tτ | ≤ 5)

A binary trace predicate that cannot be expressed using atomic propositions.

Non-interference:
Low-equivalent inputs evaluate to low-equivalent outputs.

ϕn = ∀π1.∀π2.
(
in(π1) =L in(π2)→ out(π1) =L out(π2)

)

7

Hyperproperties – Relational HyperLTL

The temperature difference between two sensors never exceeds 5 ◦C.

ϕt = ∀π.∀τ.(|tπ − tτ | ≤ 5)

A binary trace predicate that cannot be expressed using atomic propositions.

Non-interference:
Low-equivalent inputs evaluate to low-equivalent outputs.

ϕn = ∀π1.∀π2.
(
in(π1) =L in(π2)→ out(π1) =L out(π2)

)

7

Hyperproperties – Relational HyperLTL

The temperature difference between two sensors never exceeds 5 ◦C.

ϕt = ∀π.∀τ.(|tπ − tτ | ≤ 5)

A binary trace predicate that cannot be expressed using atomic propositions.

Non-interference:
Low-equivalent inputs evaluate to low-equivalent outputs.

ϕn = ∀π1.∀π2.
(
in(π1) =L in(π2)→ out(π1) =L out(π2)

)

7

Hyperproperties – Relational HyperLTL

ϕu = ∀π.∀τ.(|tπ − tτ | ≤ 5)

ϕn = ∀π1.∀π2.
(
in(π1) =L in(π2)→ out(π1) =L out(π2)

)

Given a signature σ = (S, ar), for r ∈ S,

ϕ ::= ∀π.ϕ
∣∣ ∃π.ϕ ∣∣ψ ψ ::= r(e, . . . , e)

∣∣¬ψ ∣∣ψ ∨ ψ ∣∣ψ ∣∣ψ U ψ e ::= xπ

Given a σ-structure A = (|A|, I),

Π |= r(e1, . . . , en) iff IA(r)(Je1KΠ, . . . , JenKΠ)
Π |= ψ1 ∨ ψ2 iff Π |= ψ1 or Π |= ψ2
Π |= ¬ψ iff Π 6|= ψ
Π |= ψ iff Π[1..] |= ψ
Π |= ψ1 U ψ2 iff for some i, Π[i, ..] |= ψ2, and

for all j < i T,Π[j, ..] |= ψ1

JxπKΠ = Π(π)[0](x)

T,Π |= ∀π.ϕ iff T,Π[π 7→ t] |= ϕ for all t ∈ T
T,Π |= ∃π.ϕ iff T,Π[π 7→ t] |= ϕ for some t ∈ T
T,Π |= ψ iff Π |= ψ

8

Hyperproperties – Relational HyperLTL

ϕu = ∀π.∀τ.(|tπ − tτ | ≤ 5)

ϕn = ∀π1.∀π2.
(
in(π1) =L in(π2)→ out(π1) =L out(π2)

)
Given a signature σ = (S, ar), for r ∈ S,

ϕ ::= ∀π.ϕ
∣∣ ∃π.ϕ ∣∣ψ ψ ::= r(e, . . . , e)

∣∣¬ψ ∣∣ψ ∨ ψ ∣∣ψ ∣∣ψ U ψ e ::= xπ

Given a σ-structure A = (|A|, I),

Π |= r(e1, . . . , en) iff IA(r)(Je1KΠ, . . . , JenKΠ)
Π |= ψ1 ∨ ψ2 iff Π |= ψ1 or Π |= ψ2
Π |= ¬ψ iff Π 6|= ψ
Π |= ψ iff Π[1..] |= ψ
Π |= ψ1 U ψ2 iff for some i, Π[i, ..] |= ψ2, and

for all j < i T,Π[j, ..] |= ψ1

JxπKΠ = Π(π)[0](x)

T,Π |= ∀π.ϕ iff T,Π[π 7→ t] |= ϕ for all t ∈ T
T,Π |= ∃π.ϕ iff T,Π[π 7→ t] |= ϕ for some t ∈ T
T,Π |= ψ iff Π |= ψ

8

Hyperproperties – Relational HyperLTL

ϕu = ∀π.∀τ.(|tπ − tτ | ≤ 5)

ϕn = ∀π1.∀π2.
(
in(π1) =L in(π2)→ out(π1) =L out(π2)

)
Given a signature σ = (S, ar), for r ∈ S,

ϕ ::= ∀π.ϕ
∣∣ ∃π.ϕ ∣∣ψ ψ ::= r(e, . . . , e)

∣∣¬ψ ∣∣ψ ∨ ψ ∣∣ψ ∣∣ψ U ψ e ::= xπ

Given a σ-structure A = (|A|, I),

Π |= r(e1, . . . , en) iff IA(r)(Je1KΠ, . . . , JenKΠ)
Π |= ψ1 ∨ ψ2 iff Π |= ψ1 or Π |= ψ2
Π |= ¬ψ iff Π 6|= ψ
Π |= ψ iff Π[1..] |= ψ
Π |= ψ1 U ψ2 iff for some i, Π[i, ..] |= ψ2, and

for all j < i T,Π[j, ..] |= ψ1

JxπKΠ = Π(π)[0](x)

T,Π |= ∀π.ϕ iff T,Π[π 7→ t] |= ϕ for all t ∈ T
T,Π |= ∃π.ϕ iff T,Π[π 7→ t] |= ϕ for some t ∈ T
T,Π |= ψ iff Π |= ψ

8

Hyperproperties – Relational HyperLTL

ϕu = ∀π.∀τ.(|tπ − tτ | ≤ 5)

ϕn = ∀π1.∀π2.
(
in(π1) =L in(π2)→ out(π1) =L out(π2)

)
Given a signature σ = (S, ar), for r ∈ S,

ϕ ::= ∀π.ϕ
∣∣ ∃π.ϕ ∣∣ψ ψ ::= r(e, . . . , e)

∣∣¬ψ ∣∣ψ ∨ ψ ∣∣ψ ∣∣ψ U ψ e ::= xπ

Given a σ-structure A = (|A|, I),

Π |= r(e1, . . . , en) iff IA(r)(Je1KΠ, . . . , JenKΠ)
Π |= ψ1 ∨ ψ2 iff Π |= ψ1 or Π |= ψ2
Π |= ¬ψ iff Π 6|= ψ
Π |= ψ iff Π[1..] |= ψ
Π |= ψ1 U ψ2 iff for some i, Π[i, ..] |= ψ2, and

for all j < i T,Π[j, ..] |= ψ1

JxπKΠ = Π(π)[0](x)

T,Π |= ∀π.ϕ iff T,Π[π 7→ t] |= ϕ for all t ∈ T
T,Π |= ∃π.ϕ iff T,Π[π 7→ t] |= ϕ for some t ∈ T
T,Π |= ψ iff Π |= ψ

8

Monitoring HyperLTL

ϕu = ∀π.∀τ.(π → τ) ϕa = ∀π.∃τ.(π → τ)

• Observation: the world today at 10am

U10 = { }

• Update: the world at 11am

U11 = { , }

ϕu Is there always coffee everywhere at the same time? U10 → ? , U11 → 7

ϕa Is there always coffee somewhere? U10 → ?, U11 → ?

9

Monitoring HyperLTL

ϕu = ∀π.∀τ.(π → τ) ϕa = ∀π.∃τ.(π → τ)

• Observation: the world today at 10am

U10 = { }

• Update: the world at 11am

U11 = { , }

ϕu Is there always coffee everywhere at the same time? U10 → ? , U11 → 7

ϕa Is there always coffee somewhere? U10 → ?, U11 → ?

9

Monitoring HyperLTL

ϕu = ∀π.∀τ.(π → τ) ϕa = ∀π.∃τ.(π → τ)

• Observation: the world today at 10am

U10 = { }

• Update: the world at 11am

U11 = { , }

ϕu Is there always coffee everywhere at the same time? U10 → ? , U11 → 7

ϕa Is there always coffee somewhere? U10 → ?, U11 → ?

9

Monitoring HyperLTL

ϕu = ∀π.∀τ.(π → τ) ϕa = ∀π.∃τ.(π → τ)

• Observation: the world today at 10am

U10 = { }

• Update: the world at 11am

U11 = { , , }

ϕu Is there always coffee everywhere at the same time? U10 → ? , U11 → 7

ϕa Is there always coffee somewhere? U10 → ?, U11 → ?

9

Monitoring HyperLTL

ϕu = ∀π.∀τ.(π → τ) ϕa = ∀π.∃τ.(π → τ)

• Observation: the world today at 10am

U10 = { }

• Update: the world at 11am

U11 = { , , }

ϕu Is there always coffee everywhere at the same time?

U10 → ? , U11 → 7

ϕa Is there always coffee somewhere? U10 → ?, U11 → ?

9

Monitoring HyperLTL

ϕu = ∀π.∀τ.(π → τ) ϕa = ∀π.∃τ.(π → τ)

• Observation: the world today at 10am

U10 = { }

• Update: the world at 11am

U11 = { , , }

ϕu Is there always coffee everywhere at the same time? U10 → ? ,

U11 → 7

ϕa Is there always coffee somewhere? U10 → ?, U11 → ?

9

Monitoring HyperLTL

ϕu = ∀π.∀τ.(π → τ) ϕa = ∀π.∃τ.(π → τ)

• Observation: the world today at 10am

U10 = { }

• Update: the world at 11am

U11 = { , , }

ϕu Is there always coffee everywhere at the same time? U10 → ? , U11 → 7

ϕa Is there always coffee somewhere? U10 → ?, U11 → ?

9

Monitoring HyperLTL

ϕu = ∀π.∀τ.(π → τ) ϕa = ∀π.∃τ.(π → τ)

• Observation: the world today at 10am

U10 = { }

• Update: the world at 11am

U11 = { , , }

ϕu Is there always coffee everywhere at the same time? U10 → ? , U11 → 7

ϕa Is there always coffee somewhere? U10 → ?, U11 → ?

9

Monitoring HyperLTL
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U.

Definition
A finite observation U ∈ Pfin(Σ∗) permanently satisfies (resp. violates) ϕ, if every infinite extension of
U satisfies (resp. violates) ϕ:

U perm. satisfies ϕ iff all T ∈ P(Σω) such that U � T satisfy ϕ

U perm. violates ϕ iff all T ∈ P(Σω) such that U � T violate ϕ

U11 = { , , }

U11 doesn’t perm. satisfy ∀π.∀τ.(π → τ)

U11 perm. violates ∀π.∀τ.(π → τ)

U11 neither perm. satisfies nor violates ∀π.∃τ.(π → τ)

10

Monitoring HyperLTL
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U.

Definition
A finite observation U ∈ Pfin(Σ∗) permanently satisfies (resp. violates) ϕ, if every infinite extension of
U satisfies (resp. violates) ϕ:

U perm. satisfies ϕ iff all T ∈ P(Σω) such that U � T satisfy ϕ

U perm. violates ϕ iff all T ∈ P(Σω) such that U � T violate ϕ

U11 = { , , }

U11 doesn’t perm. satisfy ∀π.∀τ.(π → τ)

U11 perm. violates ∀π.∀τ.(π → τ)

U11 neither perm. satisfies nor violates ∀π.∃τ.(π → τ)

10

Monitoring HyperLTL
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U.

Definition
A finite observation U ∈ Pfin(Σ∗) permanently satisfies (resp. violates) ϕ, if every infinite extension of
U satisfies (resp. violates) ϕ:

U perm. satisfies ϕ iff all T ∈ P(Σω) such that U � T satisfy ϕ

U perm. violates ϕ iff all T ∈ P(Σω) such that U � T violate ϕ

U11 = { , , }

U11 doesn’t perm. satisfy ∀π.∀τ.(π → τ)

U11 perm. violates ∀π.∀τ.(π → τ)

U11 neither perm. satisfies nor violates ∀π.∃τ.(π → τ)

10

Monitors for HyperLTL
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U.

U11 = { , , }
U11 neither perm. satisfies nor violates ∀π.∃τ.(π → τ)

A monitor for a property ϕ is a computable function M : Pfin(Σ∗)→ {3,7,?} that
decides a verdict for ϕ given a finite U.

The monitor Mϕ is sound if

U perm. satisfies ϕ if Mϕ(u) = 3, U perm. violates ϕ if Mϕ(u) = 7

The monitor Mϕ is perfect if, additionally,

Mϕ(u) = 3 if U perm. satisfies ϕ, Mϕ(u) = 7 if U perm. violates ϕ,
Mϕ(u) = ? o/w.

11

Monitors for HyperLTL
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U.

U11 = { , , }
U11 neither perm. satisfies nor violates ∀π.∃τ.(π → τ)

A monitor for a property ϕ is a computable function M : Pfin(Σ∗)→ {3,7,?} that
decides a verdict for ϕ given a finite U.

The monitor Mϕ is sound if

U perm. satisfies ϕ if Mϕ(u) = 3, U perm. violates ϕ if Mϕ(u) = 7

The monitor Mϕ is perfect if, additionally,

Mϕ(u) = 3 if U perm. satisfies ϕ, Mϕ(u) = 7 if U perm. violates ϕ,
Mϕ(u) = ? o/w.

11

Monitors for HyperLTL
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U.

U11 = { , , }
U11 neither perm. satisfies nor violates ∀π.∃τ.(π → τ)

A monitor for a property ϕ is a computable function M : Pfin(Σ∗)→ {3,7,?} that
decides a verdict for ϕ given a finite U.

The monitor Mϕ is sound if

U perm. satisfies ϕ if Mϕ(u) = 3, U perm. violates ϕ if Mϕ(u) = 7

The monitor Mϕ is perfect if, additionally,

Mϕ(u) = 3 if U perm. satisfies ϕ, Mϕ(u) = 7 if U perm. violates ϕ,
Mϕ(u) = ? o/w.

11

Monitors for HyperLTL
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U.

U11 = { , , }
U11 neither perm. satisfies nor violates ∀π.∃τ.(π → τ)

A monitor for a property ϕ is a computable function M : Pfin(Σ∗)→ {3,7,?} that
decides a verdict for ϕ given a finite U.

The monitor Mϕ is sound if

U perm. satisfies ϕ if Mϕ(u) = 3, U perm. violates ϕ if Mϕ(u) = 7

The monitor Mϕ is perfect if, additionally,

Mϕ(u) = 3 if U perm. satisfies ϕ, Mϕ(u) = 7 if U perm. violates ϕ,
Mϕ(u) = ? o/w.

11

Monitorability of HyperLTL formulas
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U.

U11 = { , , }
U11 neither perm. satisfies nor violates ϕa = ∀π.∃τ.(π → τ)

Observation: There is no U that permanently satisfies or violates ϕa.

There’s no point in monitoring ϕa!
(Or something is wrong with our definitions . . .)

Definition (Agrawal & Bonakdarpour 2016)

A formula ϕ is (semantically) monitorable if every observation U has an
extension V � U, such that V perm. satisfies ϕ or V perm. violates ϕ.

12

Monitorability of HyperLTL formulas
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U.

U11 = { , , }
U11 neither perm. satisfies nor violates ϕa = ∀π.∃τ.(π → τ)

Observation: There is no U that permanently satisfies or violates ϕa.

There’s no point in monitoring ϕa!
(Or something is wrong with our definitions . . .)

Definition (Agrawal & Bonakdarpour 2016)

A formula ϕ is (semantically) monitorable if every observation U has an
extension V � U, such that V perm. satisfies ϕ or V perm. violates ϕ.

12

Monitorability of HyperLTL formulas
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U.

U11 = { , , }
U11 neither perm. satisfies nor violates ϕa = ∀π.∃τ.(π → τ)

Observation: There is no U that permanently satisfies or violates ϕa.

There’s no point in monitoring ϕa!

(Or something is wrong with our definitions . . .)

Definition (Agrawal & Bonakdarpour 2016)

A formula ϕ is (semantically) monitorable if every observation U has an
extension V � U, such that V perm. satisfies ϕ or V perm. violates ϕ.

12

Monitorability of HyperLTL formulas
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U.

U11 = { , , }
U11 neither perm. satisfies nor violates ϕa = ∀π.∃τ.(π → τ)

Observation: There is no U that permanently satisfies or violates ϕa.

There’s no point in monitoring ϕa!
(Or something is wrong with our definitions . . .)

Definition (Agrawal & Bonakdarpour 2016)

A formula ϕ is (semantically) monitorable if every observation U has an
extension V � U, such that V perm. satisfies ϕ or V perm. violates ϕ.

12

Monitorability of HyperLTL formulas
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U.

U11 = { , , }
U11 neither perm. satisfies nor violates ϕa = ∀π.∃τ.(π → τ)

Observation: There is no U that permanently satisfies or violates ϕa.

There’s no point in monitoring ϕa!
(Or something is wrong with our definitions . . .)

Definition (Agrawal & Bonakdarpour 2016)

A formula ϕ is (semantically) monitorable if every observation U has an
extension V � U, such that V perm. satisfies ϕ or V perm. violates ϕ.

12

HyperLTL – Summary

• Properties defined over sets of traces.
⇒ Properties describe sets of sets of traces.
• Perfect monitors can be constructed for some formulas.

• For example, for formulas without quantifier alternations.
• But what about formulas with alternations?

• Most formulas are not monitorable.
• For example, ∀+∃+-properties are not!

trace/hyper

black/gray

computability

[1] S. Agrawal and B. Bonakdarpour. Runtime Verification of k-Safety Hyperproperties in
HyperLTL. CSF’16, IEEE CS Press, 2016.

[9] K. Havelund and D. Peled. Runtime Verification: From Propositional to First-Order Temporal
Logic. RV’18, Springer, 2018.

[8] C. Hahn. Algorithms for Monitoring Hyperproperties. RV’19, Springer, 2019.

13

HyperLTL – Summary

• Properties defined over sets of traces.
⇒ Properties describe sets of sets of traces.
• Perfect monitors can be constructed for some formulas.

• For example, for formulas without quantifier alternations.
• But what about formulas with alternations?

• Most formulas are not monitorable.
• For example, ∀+∃+-properties are not!

trace/hyper

black/gray

computability

[1] S. Agrawal and B. Bonakdarpour. Runtime Verification of k-Safety Hyperproperties in
HyperLTL. CSF’16, IEEE CS Press, 2016.

[9] K. Havelund and D. Peled. Runtime Verification: From Propositional to First-Order Temporal
Logic. RV’18, Springer, 2018.

[8] C. Hahn. Algorithms for Monitoring Hyperproperties. RV’19, Springer, 2019.

13

Gray-box monitoring (of hyperproperties)

trace/hyper

black/gray

computability

13

Why is ϕa not monitorable?

Theorem
No finite U permanently satisfies or violates ϕa = ∀π.∃τ.(π → τ).

Proof. Given any U ∈ Pfin(Σ∗),
U doesn’t perm. violate ϕa U � Σω, and Σω |= ϕa because · · · ∈ Σω;
U doesn’t perm. satisfy ϕa define T as T = {t | t = u · · · for u ∈ U};

then U � T and T violates ϕa.

This theorem can be generalized to all formulas ϕ = ∀π.∃τ.P(π, τ) where P is
• a binary (non-temporal) predicate,
• serial,
• non-reflexive.

OK, but let’s have a closer look at this proof. . .

14

Why is ϕa not monitorable?

Theorem
No finite U permanently satisfies or violates ϕa = ∀π.∃τ.(π → τ).

Proof. Given any U ∈ Pfin(Σ∗),
U doesn’t perm. violate ϕa U � Σω, and Σω |= ϕa because · · · ∈ Σω;

U doesn’t perm. satisfy ϕa define T as T = {t | t = u · · · for u ∈ U};
then U � T and T violates ϕa.

This theorem can be generalized to all formulas ϕ = ∀π.∃τ.P(π, τ) where P is
• a binary (non-temporal) predicate,
• serial,
• non-reflexive.

OK, but let’s have a closer look at this proof. . .

14

Why is ϕa not monitorable?

Theorem
No finite U permanently satisfies or violates ϕa = ∀π.∃τ.(π → τ).

Proof. Given any U ∈ Pfin(Σ∗),
U doesn’t perm. violate ϕa U � Σω, and Σω |= ϕa because · · · ∈ Σω;
U doesn’t perm. satisfy ϕa define T as T = {t | t = u · · · for u ∈ U};

then U � T and T violates ϕa.

This theorem can be generalized to all formulas ϕ = ∀π.∃τ.P(π, τ) where P is
• a binary (non-temporal) predicate,
• serial,
• non-reflexive.

OK, but let’s have a closer look at this proof. . .

14

Why is ϕa not monitorable?

Theorem
No finite U permanently satisfies or violates ϕa = ∀π.∃τ.(π → τ).

Proof. Given any U ∈ Pfin(Σ∗),
U doesn’t perm. violate ϕa U � Σω, and Σω |= ϕa because · · · ∈ Σω;
U doesn’t perm. satisfy ϕa define T as T = {t | t = u · · · for u ∈ U};

then U � T and T violates ϕa.

This theorem can be generalized to all formulas ϕ = ∀π.∃τ.P(π, τ) where P is
• a binary (non-temporal) predicate,
• serial,
• non-reflexive.

OK, but let’s have a closer look at this proof. . .

14

Why is ϕa not monitorable?

Theorem
No finite U permanently satisfies or violates ϕa = ∀π.∃τ.(π → τ).

Proof. Given any U ∈ Pfin(Σ∗),
U doesn’t perm. violate ϕa U � Σω, and Σω |= ϕa because · · · ∈ Σω;
U doesn’t perm. satisfy ϕa define T as T = {t | t = u · · · for u ∈ U};

then U � T and T violates ϕa.

This theorem can be generalized to all formulas ϕ = ∀π.∃τ.P(π, τ) where P is
• a binary (non-temporal) predicate,
• serial,
• non-reflexive.

OK, but let’s have a closer look at this proof. . .

14

Why is ϕa not monitorable?

Theorem
No finite U permanently satisfies or violates ϕa = ∀π.∃τ.(π → τ).

Proof. Given any U ∈ Pfin(Σ∗),

U doesn’t perm. violate ϕa U � Σω, and Σω |= ϕa because · · · ∈ Σω ;
. . .

This step is somewhat dubious.

• Realistic systems don’t realize every possible trace.
• There is only a finite number of coffee dispensers in the world (sadly).

When monitoring hyperproperties, we’d like to take into account
some information about the system

(gray-box monitoring).

15

Why is ϕa not monitorable?

Theorem
No finite U permanently satisfies or violates ϕa = ∀π.∃τ.(π → τ).

Proof. Given any U ∈ Pfin(Σ∗),

U doesn’t perm. violate ϕa U � Σω, and Σω |= ϕa because · · · ∈ Σω ;
. . .

This step is somewhat dubious.
• Realistic systems don’t realize every possible trace.

• There is only a finite number of coffee dispensers in the world (sadly).

When monitoring hyperproperties, we’d like to take into account
some information about the system

(gray-box monitoring).

15

Why is ϕa not monitorable?

Theorem
No finite U permanently satisfies or violates ϕa = ∀π.∃τ.(π → τ).

Proof. Given any U ∈ Pfin(Σ∗),

U doesn’t perm. violate ϕa U � Σω, and Σω |= ϕa because · · · ∈ Σω ;
. . .

This step is somewhat dubious.
• Realistic systems don’t realize every possible trace.
• There is only a finite number of coffee dispensers in the world (sadly).

When monitoring hyperproperties, we’d like to take into account
some information about the system

(gray-box monitoring).

15

Why is ϕa not monitorable?

Theorem
No finite U permanently satisfies or violates ϕa = ∀π.∃τ.(π → τ).

Proof. Given any U ∈ Pfin(Σ∗),

U doesn’t perm. violate ϕa U � Σω, and Σω |= ϕa because · · · ∈ Σω ;
. . .

This step is somewhat dubious.
• Realistic systems don’t realize every possible trace.
• There is only a finite number of coffee dispensers in the world (sadly).

When monitoring hyperproperties, we’d like to take into account
some information about the system

(gray-box monitoring).

15

Gray-box monitoring of HyperLTL properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U.

Definition

A finite observation U ∈ Pfin(Σ∗) permanently satisfies (resp. violates) ϕ,
if every infinite extension of U satisfies (resp. violates) ϕ:

U perm. satisfies ϕ iff all T ∈ P(Σω) such that U � T satisfy ϕ

U perm. violates ϕ iff all T ∈ P(Σω) such that U � T violate ϕ

S = {T ∈ P(Σω) | |T| = 3} U = { , , }

U doesn’t perm. satisfy ∀π.∃τ.(π → τ)

U perm. violates ∀π.∃τ.(π → τ)

16

Gray-box monitoring of HyperLTL properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U of a system S.

Definition

A finite observation U ∈ Pfin(Σ∗) permanently satisfies (resp. violates) ϕ,
if every infinite extension of U satisfies (resp. violates) ϕ:

U perm. satisfies ϕ iff all T ∈ P(Σω) such that U � T satisfy ϕ

U perm. violates ϕ iff all T ∈ P(Σω) such that U � T violate ϕ

S = {T ∈ P(Σω) | |T| = 3} U = { , , }

U doesn’t perm. satisfy ∀π.∃τ.(π → τ)

U perm. violates ∀π.∃τ.(π → τ)

16

Gray-box monitoring of HyperLTL properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U of a system S.

Definition
Given a set of system behaviors S ⊆ P(Σω),
a finite observation U ∈ Pfin(Σ∗) permanently satisfies (resp. violates) ϕ,
if every infinite extension of U in S satisfies (resp. violates) ϕ:

U perm. satisfies ϕ in S iff all T ∈ S such that U � T satisfy ϕ

U perm. violates ϕ in S iff all T ∈ S such that U � T violate ϕ

S = {T ∈ P(Σω) | |T| = 3} U = { , , }

U doesn’t perm. satisfy ∀π.∃τ.(π → τ)

U perm. violates ∀π.∃τ.(π → τ)

16

Gray-box monitoring of HyperLTL properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U of a system S.

Definition
Given a set of system behaviors S ⊆ P(Σω),
a finite observation U ∈ Pfin(Σ∗) permanently satisfies (resp. violates) ϕ,
if every infinite extension of U in S satisfies (resp. violates) ϕ:

U perm. satisfies ϕ in S iff all T ∈ S such that U � T satisfy ϕ

U perm. violates ϕ in S iff all T ∈ S such that U � T violate ϕ

S = {T ∈ P(Σω) | |T| = 3} U = { , , }

U doesn’t perm. satisfy ∀π.∃τ.(π → τ)

U perm. violates ∀π.∃τ.(π → τ)

16

Gray-box monitoring in general
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation O of a system S.

Definition
Given a set of system behaviors S ⊆ B,
a finite observation O ∈ O permanently satisfies (resp. violates) ϕ,
if every infinite extension of O in S satisfies (resp. violates) ϕ:

O perm. satisfies ϕ in S iff all B ∈ S such that O � B satisfy ϕ

O perm. violates ϕ in S iff all B ∈ S such that O � B violate ϕ

A formula ϕ is semantically gray-box monitorable for a system S if every
observation O has an extension P � O in S, such that P perm. satisfies ϕ in S or
P perm. violates ϕ in S.

17

Gray-box monitoring in general
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation O of a system S.

Definition
Given a set of system behaviors S ⊆ B,
a finite observation O ∈ O permanently satisfies (resp. violates) ϕ,
if every infinite extension of O in S satisfies (resp. violates) ϕ:

O perm. satisfies ϕ in S iff all B ∈ S such that O � B satisfy ϕ

O perm. violates ϕ in S iff all B ∈ S such that O � B violate ϕ

A formula ϕ is semantically gray-box monitorable for a system S if every
observation O has an extension P � O in S, such that P perm. satisfies ϕ in S or
P perm. violates ϕ in S.

17

Gray-box monitors for ∀+∃+-properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation O of a system S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O → {3,7,?} that decides a verdict for ϕ given a finite O in S.

Assuming ϕ = ∀π.∃τ.ψ(π, τ), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T � U of a given U permanently violate ϕ.

Example: ϕa = ∀π.∃τ.(π → τ) S = {T ∈ P(Σω) | |T| = 3}

Negate ϕa: ¬ϕa = ∃π.¬∃τ.(π → τ)

{ , } 7→ { · · · , · · · , · · · } ?

{ , , } 7→ ∅ 7

18

Gray-box monitors for ∀+∃+-properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation O of a system S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O → {3,7,?} that decides a verdict for ϕ given a finite O in S.

Assuming ϕ = ∀π.∃τ.ψ(π, τ), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T � U of a given U permanently violate ϕ.

Example: ϕa = ∀π.∃τ.(π → τ) S = {T ∈ P(Σω) | |T| = 3}

Negate ϕa: ¬ϕa = ∃π.¬∃τ.(π → τ)

{ , } 7→ { · · · , · · · , · · · } ?

{ , , } 7→ ∅ 7

18

Gray-box monitors for ∀+∃+-properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation O of a system S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O → {3,7,?} that decides a verdict for ϕ given a finite O in S.

Assuming ϕ = ∀π.∃τ.ψ(π, τ), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T � U of a given U permanently violate ϕ.

Example: ϕa = ∀π.∃τ.(π → τ) S = {T ∈ P(Σω) | |T| = 3}

Negate ϕa: ¬ϕa = ∃π.¬∃τ.(π → τ)

{ , } 7→ { · · · , · · · , · · · } ?

{ , , } 7→ ∅ 7

18

Gray-box monitors for ∀+∃+-properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation O of a system S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O → {3,7,?} that decides a verdict for ϕ given a finite O in S.

Assuming ϕ = ∀π.∃τ.ψ(π, τ), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T � U of a given U permanently violate ϕ.

Example: ϕa = ∀π.∃τ.(π → τ) S = {T ∈ P(Σω) | |T| = 3}

Negate ϕa: ¬ϕa = ∃π.¬∃τ.(π → τ)

{ , } 7→ { · · · , · · · , · · · } ?

{ , , } 7→ ∅ 7

18

Gray-box monitors for ∀+∃+-properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation O of a system S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O → {3,7,?} that decides a verdict for ϕ given a finite O in S.

Assuming ϕ = ∀π.∃τ.ψ(π, τ), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T � U of a given U permanently violate ϕ.

Example: ϕa = ∀π.∃τ.(π → τ) S = {T ∈ P(Σω) | |T| = 3}

Negate ϕa: ¬ϕa = ∃π.¬∃τ.(π → τ)

{ , } 7→ { · · · , · · · , · · · } ?

{ , , } 7→ ∅ 7

18

Gray-box monitors for ∀+∃+-properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation O of a system S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O → {3,7,?} that decides a verdict for ϕ given a finite O in S.

Assuming ϕ = ∀π.∃τ.ψ(π, τ), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T � U of a given U permanently violate ϕ.

Example: ϕa = ∀π.∃τ.(π → τ) S = {T ∈ P(Σω) | |T| = 3}

Negate ϕa: ¬ϕa = ∃π.¬∃τ.(π → τ) instantiate

{ , } 7→ { · · · , · · · , · · · } ?

{ , , } 7→ ∅ 7

18

Gray-box monitors for ∀+∃+-properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation O of a system S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O → {3,7,?} that decides a verdict for ϕ given a finite O in S.

Assuming ϕ = ∀π.∃τ.ψ(π, τ), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T � U of a given U permanently violate ϕ.

Example: ϕa = ∀π.∃τ.(π → τ) S = {T ∈ P(Σω) | |T| = 3}

Negate ϕa: ¬ϕa = ∃π.¬∃τ.(π → τ) instantiate solve

{ , } 7→ { · · · , · · · , · · · } ?

{ , , } 7→ ∅ 7

18

Gray-box monitors for ∀+∃+-properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation O of a system S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O → {3,7,?} that decides a verdict for ϕ given a finite O in S.

Assuming ϕ = ∀π.∃τ.ψ(π, τ), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T � U of a given U permanently violate ϕ.

Example: ϕa = ∀π.∃τ.(π → τ) S = {T ∈ P(Σω) | |T| = 3}

Negate ϕa: ¬ϕa = ∃π.¬∃τ.(π → τ) instantiate solve

{ , } 7→ { · · · , · · · , · · · } ?

{ , , } 7→ ∅ 7

18

Gray-box monitoring – Summary

• Properties defined over observations (e.g. traces or sets of
traces).
⇒ Properties describe sets of observations.
• Perfect monitors can be constructed for some formulas.

• For example, for formulas without quantifier alternations (as
for black-box).

• But also for ∀+∃+-formulas when S imposes enough
constraints.

• Monitorability of formulas depends on set of valid system
behaviors S.
• For example, ∀+∃+-properties are monitorable for some

choices of S.
• We will see a more interesting example later. . .

trace/hyper

black/gray

computability

19

Undecidable hyperproperties

trace/hyper

black/gray

computability

19

Monitorability is not existence of monitors
A formula ϕ is semantically gray-box monitorable in S if every observation O has
an extension P � O that permanently satisfies or violates ϕ in S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O{3,7,?} that decides a verdict for ϕ given a finite O.

Observation: Monitorability of ϕ in S does not guarantee the existence of a perfect
monitor Mϕ,S .

Example: Let T be some Turing machine.

S = {t ∈ Σω | ti = the state of T after i steps}, ϕ =halt.

Because T is deterministic, either u perm. satisfies ϕ in S or
u perm. violates ϕ in S, for any u in S.
⇒ ϕ is monitorable in S;
⇒ but there is no perfect monitor Mϕ,S .

20

Monitorability is not existence of monitors
A formula ϕ is semantically gray-box monitorable in S if every observation O has
an extension P � O that permanently satisfies or violates ϕ in S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O{3,7,?} that decides a verdict for ϕ given a finite O.

Observation: Monitorability of ϕ in S does not guarantee the existence of a perfect
monitor Mϕ,S .

Example: Let T be some Turing machine.

S = {t ∈ Σω | ti = the state of T after i steps}, ϕ =halt.

Because T is deterministic, either u perm. satisfies ϕ in S or
u perm. violates ϕ in S, for any u in S.
⇒ ϕ is monitorable in S;
⇒ but there is no perfect monitor Mϕ,S .

20

Monitorability is not existence of monitors
A formula ϕ is semantically gray-box monitorable in S if every observation O has
an extension P � O that permanently satisfies or violates ϕ in S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O{3,7,?} that decides a verdict for ϕ given a finite O.

Observation: Monitorability of ϕ in S does not guarantee the existence of a perfect
monitor Mϕ,S .

Example: Let T be some Turing machine.

S = {t ∈ Σω | ti = the state of T after i steps}, ϕ =halt.

Because T is deterministic, either u perm. satisfies ϕ in S or
u perm. violates ϕ in S, for any u in S.
⇒ ϕ is monitorable in S;
⇒ but there is no perfect monitor Mϕ,S .

20

Monitorability is not existence of monitors
A formula ϕ is semantically gray-box monitorable in S if every observation O has
an extension P � O that permanently satisfies or violates ϕ in S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O{3,7,?} that decides a verdict for ϕ given a finite O.

Observation: Monitorability of ϕ in S does not guarantee the existence of a perfect
monitor Mϕ,S .

Example: Let T be some Turing machine.

S = {t ∈ Σω | ti = the state of T after i steps}, ϕ =halt.

Because T is deterministic, either u perm. satisfies ϕ in S or
u perm. violates ϕ in S, for any u in S.

⇒ ϕ is monitorable in S;
⇒ but there is no perfect monitor Mϕ,S .

20

Monitorability is not existence of monitors
A formula ϕ is semantically gray-box monitorable in S if every observation O has
an extension P � O that permanently satisfies or violates ϕ in S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O{3,7,?} that decides a verdict for ϕ given a finite O.

Observation: Monitorability of ϕ in S does not guarantee the existence of a perfect
monitor Mϕ,S .

Example: Let T be some Turing machine.

S = {t ∈ Σω | ti = the state of T after i steps}, ϕ =halt.

Because T is deterministic, either u perm. satisfies ϕ in S or
u perm. violates ϕ in S, for any u in S.
⇒ ϕ is monitorable in S;

⇒ but there is no perfect monitor Mϕ,S .

20

Monitorability is not existence of monitors
A formula ϕ is semantically gray-box monitorable in S if every observation O has
an extension P � O that permanently satisfies or violates ϕ in S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O{3,7,?} that decides a verdict for ϕ given a finite O.

Observation: Monitorability of ϕ in S does not guarantee the existence of a perfect
monitor Mϕ,S .

Example: Let T be some Turing machine.

S = {t ∈ Σω | ti = the state of T after i steps}, ϕ =halt.

Because T is deterministic, either u perm. satisfies ϕ in S or
u perm. violates ϕ in S, for any u in S.
⇒ ϕ is monitorable in S;
⇒ but there is no perfect monitor Mϕ,S .

20

Monitorability is not existence of monitors
A formula ϕ is semantically gray-box monitorable in S if every observation O has
an extension P � O that permanently satisfies or violates ϕ in S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O{3,7,?} that decides a verdict for ϕ given a finite O.

Observation: Monitorability of ϕ in S does not guarantee the existence of a perfect
monitor Mϕ,S .

Example: Let T be some Turing machine.

S = {t ∈ Σω | ti = the state of T after i steps}, ϕ =halt.

Because T is deterministic, either u perm. satisfies ϕ in S or
u perm. violates ϕ in S, for any u in S.
⇒ ϕ is monitorable in S;
⇒ there is a sound monitor Mϕ,S that only answers 3 or ?!

20

Case study: distributed data minimality

trace/hyper

black/gray

computability

20

Slide by David Basin, Can we Verify GDPR Compliance?, RV’19 keynote.

20

Case study: distributed data minimality

Distributed data minimality (DDM)
• privacy property (GDPR)

Personal data shall be: [. . .] adequate, relevant and limited to what is
necessary in relation to the purposes for which they are processed (‘data
minimization’);

– GDPR [5, Art. 5(1.c)]

• generalization of data minimality to a multi-input setting

21

Case study: distributed data minimality

Distributed data minimality (DDM)
• privacy property (GDPR)

Personal data shall be: [. . .] adequate, relevant and limited to what is
necessary in relation to the purposes for which they are processed (‘data
minimization’);

– GDPR [5, Art. 5(1.c)]

• generalization of data minimality to a multi-input setting

21

Case study: distributed data minimality

Distributed data minimality (DDM)
• privacy property (GDPR)

Personal data shall be: [. . .] adequate, relevant and limited to what is
necessary in relation to the purposes for which they are processed (‘data
minimization’);

– GDPR [5, Art. 5(1.c)]

• generalization of data minimality to a multi-input setting

21

DDM example: toll road

Photos by Rauenstein, Radosław Drożdżewski, Chong Fat, Hesekiel (Wikipedia).

22

DDM example: toll road

class Toll {
int rate(int hour, int passengers) {
int r; // standard rates:
if (hour >= 9 && hour <= 17) { r = 90; } // - daytime
else { r = 70; } // - nighttime
if (passengers > 2) { r = r - (r / 5); } // carpool: 20% off
return r;

}

int fee(int t1, int t2, int t3, int p) {
int r1 = rate(t1, p); // rates at each toll station
int r2 = rate(t2, p);
int r3 = rate(t3, p);
int f1 = max(r1, r2) * 4; // fees per road section
int f2 = max(r2, r3) * 7;
return f1 + f2; // total fee

}
}

23

Case study: distributed data minimality

• Distributed data minimality (DDM)
• privacy property (GDPR)
• generalization of data minimality to a multi-input setting
• ∀∀∃∃-hyperproperty

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)

• Challenges:
• Not black-box monitorable.
• Undecidable.
• Defined over arbitrary domains/datatypes.

Yet, we have a monitor [11]. . .
here’s how. . .

24

Case study: distributed data minimality

• Distributed data minimality (DDM)
• privacy property (GDPR)
• generalization of data minimality to a multi-input setting
• ∀∀∃∃-hyperproperty

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
• Challenges:

• Not black-box monitorable.
• Undecidable.
• Defined over arbitrary domains/datatypes.

Yet, we have a monitor [11]. . .
here’s how. . .

24

Case study: distributed data minimality

• Distributed data minimality (DDM)
• privacy property (GDPR)
• generalization of data minimality to a multi-input setting
• ∀∀∃∃-hyperproperty

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
• Challenges:

• Not black-box monitorable.
• Undecidable.
• Defined over arbitrary domains/datatypes.

Yet, we have a monitor [11]. . .

here’s how. . .

24

Case study: distributed data minimality

• Distributed data minimality (DDM)
• privacy property (GDPR)
• generalization of data minimality to a multi-input setting
• ∀∀∃∃-hyperproperty

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
• Challenges:

• Not black-box monitorable.
• Undecidable.
• Defined over arbitrary domains/datatypes.

Yet, we have a monitor [11]. . .
here’s how. . .

24

Distributed data minimality

Definition (Antignac, Sands & Schneider, 2017)

A function f is distributed data-minimal (DDM) if, for all input positions k and all
x, y ∈ Ik such that x 6= y, there is some z ∈ I, such that f (z[k 7→ x]) 6= f (z[k 7→ y]).

Using the generalized framework
• Set of observable behaviors O = Σ#

f are valid function applications.
• Not black-box monitorable.

25

Distributed data minimality

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
ϕdm =

∧n
i=1 ϕi, Σ#

f = {(x, y) | f (x) = y}, Sf = P(Σ#
f)

Using the generalized framework
• Set of observable behaviors O = Σ#

f are valid function applications.
• Not black-box monitorable.

25

Distributed data minimality

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
ϕdm =

∧n
i=1 ϕi, Σ#

f = {(x, y) | f (x) = y}, Sf = P(Σ#
f)

Using the generalized framework
• Set of observable behaviors O = Σ#

f are valid function applications.

• Not black-box monitorable.

25

Distributed data minimality

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
ϕdm =

∧n
i=1 ϕi, Σ#

f = {(x, y) | f (x) = y}, Sf = P(Σ#
f)

Using the generalized framework
• Set of observable behaviors O = Σ#

f are valid function applications.
• Not black-box monitorable.

25

Distributed data minimality

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
ϕdm =

∧n
i=1 ϕi, Σ#

f = {(x, y) | f (x) = y}, Sf = P(Σ#
f)

Using the generalized framework
• Set of observable behaviors O = Σ#

f are valid function applications.
• Not black-box monitorable, but gray-box monitorable (thanks to S).

25

A sound monitor for distributed data minimality

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
ϕdm =

∧n
i=1 ϕi, Σ#

f = {(x, y) | f (x) = y}, Sf = P(Σ#
f)

We build a monitor

Mdm(U) =


? if f (uin) 6= uout for some u ∈ U,
? if

∧n
i=1
∧

u,u′∈U Nf ,i(proji(uin),proji(u′in)) 6= 7,

7 otherwise.

using an oracle Nf ,i(x, y) (implemented as symbolic execution + SMT solver):

Nf ,i(x, y) =

{
3 or ? if ∃z ∈ I. f (z[i 7→ x]) 6= f (z[i 7→ y]),

7 or ? otherwise.

26

A sound monitor for distributed data minimality

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
ϕdm =

∧n
i=1 ϕi, Σ#

f = {(x, y) | f (x) = y}, Sf = P(Σ#
f)

We build a monitor

Mdm(U) =


? if f (uin) 6= uout for some u ∈ U,
? if

∧n
i=1
∧

u,u′∈U Nf ,i(proji(uin), proji(u′in)) 6= 7,

7 otherwise.

using an oracle Nf ,i(x, y) (implemented as symbolic execution + SMT solver):

Nf ,i(x, y) =

{
3 or ? if ∃z ∈ I. f (z[i 7→ x]) 6= f (z[i 7→ y]),

7 or ? otherwise.

26

A sound monitor for distributed data minimality

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
ϕdm =

∧n
i=1 ϕi, Σ#

f = {(x, y) | f (x) = y}, Sf = P(Σ#
f)

We build a monitor

Mdm(U) =


? if f (uin) 6= uout for some u ∈ U,
? if

∧n
i=1
∧

u,u′∈U Nf ,i(proji(uin), proji(u′in)) 6= 7,

7 otherwise.

using an oracle Nf ,i(x, y) (implemented as symbolic execution + SMT solver):

Nf ,i(x, y) =

{
3 or ? if ∃z ∈ I. f (z[i 7→ x]) 6= f (z[i 7→ y]),

7 or ? otherwise.

26

A sound monitor for distributed data minimality
We build a monitor

Mdm(U) =


? if f (uin) 6= uout for some u ∈ U,
? if

∧n
i=1
∧

u,u′∈U Nf ,i(proji(uin), proji(u′in)) 6= 7,

7 otherwise.

using an oracle Nf ,i(x, y) (implemented as symbolic execution + SMT solver):

Nf ,i(x, y) =

{
3 or ? if ∃z ∈ I. f (z[i 7→ x]) 6= f (z[i 7→ y]),

7 or ? otherwise.

The monitor is sound but not perfect.

26

Please do try this at home!

https://github.com/sstucki/minion/

27

https://github.com/sstucki/minion/

Thank you!

Coauthors

• César Sánchez, IMDEA SW
• Borzoo Bonakdarpour, ISU
• Gerardo Schneider, GU/Chalmers

Checkout the minion monitor for data minimality

https://github.com/sstucki/minion/

28

https://github.com/sstucki/minion/

Backup slides

28

Trace properties – LTL

ϕs =  ϕl = ϕr = 

t1 = · · · t1 |= ϕs t1 |= ϕl t1 |= ϕr

t2 = · · · t2 6|= ϕs t2 |= ϕl t2 6|= ϕr

t3 = · · · t3 6|= ϕs t3 |= ϕl t3 |= ϕr

ϕ ::= a
∣∣¬ϕ ∣∣ϕ ∨ ϕ ∣∣ϕ ∣∣ϕ U ϕ ϕ ≡ true U ϕ ϕ ≡ ¬¬ϕ

t |= p iff p ∈ t[0]
t |= ¬ϕ iff t 6|= ϕ
t |= ϕ1 ∨ ϕ2 iff t |= ϕ1 or t |= ϕ2
t |= ϕ iff t[1, ..] |= ϕ
t |= ϕ1 U ϕ2 iff for some i, t[i, ..] |= ϕ2 and for all j < i, t[j, ..] |= ϕ1

29

Trace properties – LTL

ϕs =  ϕl = ϕr = 

t1 = · · · t1 |= ϕs t1 |= ϕl t1 |= ϕr

t2 = · · · t2 6|= ϕs t2 |= ϕl t2 6|= ϕr

t3 = · · · t3 6|= ϕs t3 |= ϕl t3 |= ϕr

ϕ ::= a
∣∣¬ϕ ∣∣ϕ ∨ ϕ ∣∣ϕ ∣∣ϕ U ϕ ϕ ≡ true U ϕ ϕ ≡ ¬¬ϕ

t |= p iff p ∈ t[0]
t |= ¬ϕ iff t 6|= ϕ
t |= ϕ1 ∨ ϕ2 iff t |= ϕ1 or t |= ϕ2
t |= ϕ iff t[1, ..] |= ϕ
t |= ϕ1 U ϕ2 iff for some i, t[i, ..] |= ϕ2 and for all j < i, t[j, ..] |= ϕ1

29

Trace properties – LTL

ϕs =  ϕl = ϕr = 

t1 = · · · t1 |= ϕs t1 |= ϕl t1 |= ϕr

t2 = · · · t2 6|= ϕs t2 |= ϕl t2 6|= ϕr

t3 = · · · t3 6|= ϕs t3 |= ϕl t3 |= ϕr

ϕ ::= a
∣∣¬ϕ ∣∣ϕ ∨ ϕ ∣∣ϕ ∣∣ϕ U ϕ ϕ ≡ true U ϕ ϕ ≡ ¬¬ϕ

t |= p iff p ∈ t[0]
t |= ¬ϕ iff t 6|= ϕ
t |= ϕ1 ∨ ϕ2 iff t |= ϕ1 or t |= ϕ2
t |= ϕ iff t[1, ..] |= ϕ
t |= ϕ1 U ϕ2 iff for some i, t[i, ..] |= ϕ2 and for all j < i, t[j, ..] |= ϕ1

29

Monitoring LTL

ϕs =  ϕl = ϕr = 

• Observation: the world today at 10am

u10 =

• Update: the world at 11am

u11 =

ϕs Is there always coffee? u10 → ? , u11 → 7

ϕl Is there eventually coffee? u10 → 3, u11 → 3

ϕr Is there always eventually coffee? u10 → ? , u11 → ?

30

Monitoring LTL

ϕs =  ϕl = ϕr = 

• Observation: the world today at 10am

u10 =

• Update: the world at 11am

u11 =

ϕs Is there always coffee? u10 → ? , u11 → 7

ϕl Is there eventually coffee? u10 → 3, u11 → 3

ϕr Is there always eventually coffee? u10 → ? , u11 → ?

30

Monitoring LTL

ϕs =  ϕl = ϕr = 

• Observation: the world today at 10am

u10 =

• Update: the world at 11am

u11 =

ϕs Is there always coffee? u10 → ? , u11 → 7

ϕl Is there eventually coffee? u10 → 3, u11 → 3

ϕr Is there always eventually coffee? u10 → ? , u11 → ?

30

Monitoring LTL

ϕs =  ϕl = ϕr = 

• Observation: the world today at 10am

u10 =

• Update: the world at 11am

u11 =

ϕs Is there always coffee?

u10 → ? , u11 → 7

ϕl Is there eventually coffee? u10 → 3, u11 → 3

ϕr Is there always eventually coffee? u10 → ? , u11 → ?

30

Monitoring LTL

ϕs =  ϕl = ϕr = 

• Observation: the world today at 10am

u10 =

• Update: the world at 11am

u11 =

ϕs Is there always coffee? u10 → ?

, u11 → 7

ϕl Is there eventually coffee? u10 → 3, u11 → 3

ϕr Is there always eventually coffee? u10 → ? , u11 → ?

30

Monitoring LTL

ϕs =  ϕl = ϕr = 

• Observation: the world today at 10am

u10 =

• Update: the world at 11am

u11 =

ϕs Is there always coffee? u10 → ? , u11 → 7

ϕl Is there eventually coffee? u10 → 3, u11 → 3

ϕr Is there always eventually coffee? u10 → ? , u11 → ?

30

Monitoring LTL

ϕs =  ϕl = ϕr = 

• Observation: the world today at 10am

u10 =

• Update: the world at 11am

u11 =

ϕs Is there always coffee? u10 → ? , u11 → 7

ϕl Is there eventually coffee? u10 → 3, u11 → 3

ϕr Is there always eventually coffee? u10 → ? , u11 → ?

30

Monitoring LTL

ϕs =  ϕl = ϕr = 

• Observation: the world today at 10am

u10 =

• Update: the world at 11am

u11 =

ϕs Is there always coffee? u10 → ? , u11 → 7

ϕl Is there eventually coffee? u10 → 3, u11 → 3

ϕr Is there always eventually coffee? u10 → ? , u11 → ?

30

Monitoring LTL
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), at runtime.

Definition
A finite observation u permanently satisfies (resp. violates) ϕ, if every infinite extension of u satisfies
(resp. violates) ϕ:

u perm. satisfies ϕ iff all t ∈ Σω such that u � t satisfy ϕ

u perm. violates ϕ iff all t ∈ Σω such that u � t violate ϕ

u11 =

u11 doesn’t perm. satisfy  u11 perm. violates 

u11 perm. satisfies u11 doesn’t perm. violate

u11 neither perm. satisfies nor violates 

31

Monitoring LTL
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation u.

Definition
A finite observation u permanently satisfies (resp. violates) ϕ, if every infinite extension of u satisfies
(resp. violates) ϕ:

u perm. satisfies ϕ iff all t ∈ Σω such that u � t satisfy ϕ

u perm. violates ϕ iff all t ∈ Σω such that u � t violate ϕ

u11 =

u11 doesn’t perm. satisfy  u11 perm. violates 

u11 perm. satisfies u11 doesn’t perm. violate

u11 neither perm. satisfies nor violates 

31

Monitoring LTL
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation u.

Definition
A finite observation u permanently satisfies (resp. violates) ϕ, if every infinite extension of u satisfies
(resp. violates) ϕ:

u perm. satisfies ϕ iff all t ∈ Σω such that u � t satisfy ϕ

u perm. violates ϕ iff all t ∈ Σω such that u � t violate ϕ

u11 =

u11 doesn’t perm. satisfy  u11 perm. violates 

u11 perm. satisfies u11 doesn’t perm. violate

u11 neither perm. satisfies nor violates 

31

Monitoring LTL
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation u.

Definition
A finite observation u permanently satisfies (resp. violates) ϕ, if every infinite extension of u satisfies
(resp. violates) ϕ:

u perm. satisfies ϕ iff all t ∈ Σω such that u � t satisfy ϕ

u perm. violates ϕ iff all t ∈ Σω such that u � t violate ϕ

u11 =

u11 doesn’t perm. satisfy  u11 perm. violates 

u11 perm. satisfies u11 doesn’t perm. violate

u11 neither perm. satisfies nor violates 

31

Monitors for LTL

Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation u.

A monitor for a property ϕ is a computable function Mϕ : Σ∗ → {3,7,?} that
decides a verdict for ϕ given a finite u.

The monitor Mϕ is sound if

u perm. satisfies ϕ if Mϕ(u) = 3, u perm. violates ϕ if Mϕ(u) = 7

The monitor Mϕ is perfect if, additionally,

Mϕ(u) = 3 if u perm. satisfies ϕ, Mϕ(u) = 7 if u perm. violates ϕ,
Mϕ(u) = ? o/w.

Fact: every LTL formula has a perfect monitor.

32

Monitors for LTL

Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation u.

A monitor for a property ϕ is a computable function Mϕ : Σ∗ → {3,7,?} that
decides a verdict for ϕ given a finite u.

The monitor Mϕ is sound if

u perm. satisfies ϕ if Mϕ(u) = 3, u perm. violates ϕ if Mϕ(u) = 7

The monitor Mϕ is perfect if, additionally,

Mϕ(u) = 3 if u perm. satisfies ϕ, Mϕ(u) = 7 if u perm. violates ϕ,
Mϕ(u) = ? o/w.

Fact: every LTL formula has a perfect monitor.

32

Monitors for LTL

Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation u.

A monitor for a property ϕ is a computable function Mϕ : Σ∗ → {3,7,?} that
decides a verdict for ϕ given a finite u.

The monitor Mϕ is sound if

u perm. satisfies ϕ if Mϕ(u) = 3, u perm. violates ϕ if Mϕ(u) = 7

The monitor Mϕ is perfect if, additionally,

Mϕ(u) = 3 if u perm. satisfies ϕ, Mϕ(u) = 7 if u perm. violates ϕ,
Mϕ(u) = ? o/w.

Fact: every LTL formula has a perfect monitor.

32

Monitors for LTL

Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation u.

A monitor for a property ϕ is a computable function Mϕ : Σ∗ → {3,7,?} that
decides a verdict for ϕ given a finite u.

The monitor Mϕ is sound if

u perm. satisfies ϕ if Mϕ(u) = 3, u perm. violates ϕ if Mϕ(u) = 7

The monitor Mϕ is perfect if, additionally,

Mϕ(u) = 3 if u perm. satisfies ϕ, Mϕ(u) = 7 if u perm. violates ϕ,
Mϕ(u) = ? o/w.

Fact: every LTL formula has a perfect monitor.

32

Monitors for LTL

Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation u.

A monitor for a property ϕ is a computable function Mϕ : Σ∗ → {3,7,?} that
decides a verdict for ϕ given a finite u.

The monitor Mϕ is sound if

u perm. satisfies ϕ if Mϕ(u) = 3, u perm. violates ϕ if Mϕ(u) = 7

The monitor Mϕ is perfect if, additionally,

Mϕ(u) = 3 if u perm. satisfies ϕ, Mϕ(u) = 7 if u perm. violates ϕ,
Mϕ(u) = ? o/w.

Fact: every LTL formula has a perfect monitor.

32

Monitorability of LTL formulas

Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation u.

ϕr =  u11 =

u11 doesn’t perm. satisfy ϕr u11 doesn’t perm. violate ϕr

Observation: There is no u that permanently satisfies or violates ϕr.

There’s no point in monitoring ϕr!

Definition (Pnueli & Zaks 2006)

A formula ϕ is (semantically) monitorable if every observation u has an
extension v � u, such that either v perm. satisfies ϕ or v perm. violates ϕ.

33

Monitorability of LTL formulas

Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation u.

ϕr =  u11 =

u11 doesn’t perm. satisfy ϕr u11 doesn’t perm. violate ϕr

Observation: There is no u that permanently satisfies or violates ϕr.

There’s no point in monitoring ϕr!

Definition (Pnueli & Zaks 2006)

A formula ϕ is (semantically) monitorable if every observation u has an
extension v � u, such that either v perm. satisfies ϕ or v perm. violates ϕ.

33

Monitorability of LTL formulas

Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation u.

ϕr =  u11 =

u11 doesn’t perm. satisfy ϕr u11 doesn’t perm. violate ϕr

Observation: There is no u that permanently satisfies or violates ϕr.

There’s no point in monitoring ϕr!

Definition (Pnueli & Zaks 2006)

A formula ϕ is (semantically) monitorable if every observation u has an
extension v � u, such that either v perm. satisfies ϕ or v perm. violates ϕ.

33

Monitorability of LTL formulas

Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation u.

ϕr =  u11 =

u11 doesn’t perm. satisfy ϕr u11 doesn’t perm. violate ϕr

Observation: There is no u that permanently satisfies or violates ϕr.

There’s no point in monitoring ϕr!

Definition (Pnueli & Zaks 2006)

A formula ϕ is (semantically) monitorable if every observation u has an
extension v � u, such that either v perm. satisfies ϕ or v perm. violates ϕ.

33

Shreya Agrawal and Borzoo Bonakdarpour.
Runtime verification of k-safety hyperproperties in HyperLTL.
In Proc. of the IEEE 29th Computer Security Foundations (CSF’16), pages
239–252. IEEE CS Press, 2016.

Andreas Bauer, Martin Leucker, and Chrisitan Schallhart.
Runtime verification for LTL and TLTL.
ACM T. Softw. Eng. Meth., 20(4):14, 2011.

Andreas Bauer, Martin Leucker, and Christian Schallhart.
The good, the bad, and the ugly—but how ugly is ugly?
In Proc. of the 7th Int’l Workshop on Runtime Verification (RV’07), volume
4839 of LNCS, pages 126–138. Springer, 2007.

Borzoo Bonakdarpour, César Sánchez, and Gerardo Schneider.
Monitoring hyperproperties by combining static analysis and runtime
verification.
In Proc. of the 8th Int’l Symp. on Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA’2018). Verification. Part II, volume 11245 of
LNCS, pages 8–27. Springer, 2018.

33

European Parliament and Council of the European Union.
Regulation (EU) 2016/679 of the European Parliament and of the Council of
27 april 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and
repealing directive 95/46/EC (General Data Protection Regulation).
Official Journal of the European Union, L(119):1–88, April 2016.

Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier.
What can you verify and enforce at runtime?
International Journal on Software Tools for Technology Transfer (STTT),
14(3):349–382, 2012.

Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup.
Monitoring hyperproperties.
In Proc. of 17th Int’l Conf. on Runtime Verification (RV’17), volume 10548 of
LNCS, pages 190–207. Springer, 2017.

Christopher Hahn.
Algorithms for monitoring hyperproperties.

33

In Bernd Finkbeiner and Leonardo Mariani, editors, Runtime Verification,
pages 70–90, Cham, 2019. Springer International Publishing.

Klaus Havelund and Doron Peled.
Runtime verification: From propositional to first-order temporal logic.
In Proc. of the 18th Int’l Conf. on Runtime Verification (RV’18), volume 11237
of LNCS, pages 90–112. Springer, 2018.

Amir Pnueli and Aleksandr Zaks.
PSL model checking and run-time verification via testers.
In Proc. of the 14th Int’l Symp on Formal Methods (FM’06), volume 4085 of
LNCS, pages 573–586. Springer, 2006.

Sandro Stucki, César Sánchez, Gerardo Schneider, and Borzoo
Bonakdarpour.
Gray-box monitoring of hyperproperties (extended version).
Technical Report abs/1906.08731, CoRR–arXiv.org, 2019.

Xian Zhang, Martin Leucker, and Wei Dong.
Runtime verification with predictive semantics.

33

In Proc. of 4th NASA Int’l Symp on Formal Methods (NFM’12), volume 7226 of
LNCS, pages 418–432. Springer, 2012.

33

Except where otherwise noted, this work is licensed under

http://creativecommons.org/licenses/by/3.0/

33

http://creativecommons.org/licenses/by/3.0/

	Appendix

