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Motivation: distributed data minimality

• Distributed data minimality (DDM)
• privacy property (GDPR)
• generalization of data minimality to a multi-input setting

• ∀∀∃∃-hyperproperty

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
• Challenges:

• Not black-box monitorable.
• Undecidable.
• Defined over arbitrary domains/datatypes.

Yet, we have a monitor. . .
what’s going on here?
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Monitoring LTL

ϕs =  ϕl = ϕr = 

• Observation: the world today at 10am

u10 =

• Update: the world at 11am

u11 =

ϕs Is there always coffee? u10 → ? , u11 → 7

ϕl Is there eventually coffee? u10 → 3, u11 → 3

ϕr Is there always eventually coffee? u10 → ? , u11 → ?

A monitor for a property ϕ is a computable function Mϕ : Σ∗ → {3,7,?} that
decides whether a given property ϕ is permanently satisfied (3), violated (7), or
neither (?), given a finite observation u.
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LTL – Summary

• Properties defined over individual traces.
⇒ Properties describe sets of traces.
• Perfect monitors can be constructed for any formula.
• Not every formula is monitorable. For example,

• safety and liveness properties are monitorable,
• recurrence properties () are not.
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[10] A. Pnueli and A. Zaks. PSL Model Checking and Run-time Verification via Testers., FM’06,
Springer, 2006.

[6] Y. Falcone, J-C. Fernandez, and L. Mounier. What can you verify and enforce at runtime?,
STTT 14(3), 2012.

[9] K. Havelund and D. Peled. Runtime Verification: From Propositional to First-Order Temporal
Logic. RV’18, Springer, 2018.

. . . and many more!
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Hyperproperties – HyperLTL

ϕu = ∀π.∀τ.( π → τ) ϕa = ∀π.∃τ.( π → τ)

T1 = { · · ·} T1 |= ϕu T1 |= ϕa

T2 = { · · · , · · ·} T2 6|= ϕu T2 |= ϕa

T3 = { · · · , · · · , T3 6|= ϕu T3 6|= ϕa

· · · , · · · , . . . }

ϕ ::= ∀π.ϕ
∣∣ ∃π.ϕ ∣∣ψ ψ ::= aπ

∣∣¬ψ ∣∣ψ ∨ ψ ∣∣ψ ∣∣ψ U ψ
Π |= aπ iff a ∈ Π(π)[0]
Π |= ψ1 ∨ ψ2 iff Π |= ψ1 or Π |= ψ2
Π |= ¬ψ iff Π 6|= ψ
Π |= ψ iff Π[1..] |= ψ
Π |= ψ1 U ψ2 iff for some i, Π[i, ..] |= ψ2, and

for all j < i T,Π[j, ..] |= ψ1

T,Π |= ∀π.ϕ iff T,Π[π 7→ t] |= ϕ for all t ∈ T
T,Π |= ∃π.ϕ iff T,Π[π 7→ t] |= ϕ for some t ∈ T
T,Π |= ψ iff Π |= ψ
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Hyperproperties – Relational HyperLTL

The temperature difference between two sensors never exceeds 5 ◦C.

ϕt = ∀π.∀τ.(|tπ − tτ | ≤ 5)

A binary trace predicate that cannot be expressed using atomic propositions.

Non-interference:
Low-equivalent inputs evaluate to low-equivalent outputs.

ϕn = ∀π1.∀π2.
(
in(π1) =L in(π2)→ out(π1) =L out(π2)

)
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Monitoring HyperLTL

ϕu = ∀π.∀τ.( π → τ ) ϕa = ∀π.∃τ.( π → τ )

• Observation: the world today at 10am

U10 = { }

• Update: the world at 11am

U11 = { , }

ϕu Is there always coffee everywhere at the same time? U10 → ? , U11 → 7

ϕa Is there always coffee somewhere? U10 → ?, U11 → ?
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Monitoring HyperLTL
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U.

Definition
A finite observation U ∈ Pfin(Σ∗) permanently satisfies (resp. violates) ϕ, if every infinite extension of
U satisfies (resp. violates) ϕ:

U perm. satisfies ϕ iff all T ∈ P(Σω) such that U � T satisfy ϕ

U perm. violates ϕ iff all T ∈ P(Σω) such that U � T violate ϕ

U11 = { , , }

U11 doesn’t perm. satisfy ∀π.∀τ.( π → τ )

U11 perm. violates ∀π.∀τ.( π → τ )

U11 neither perm. satisfies nor violates ∀π.∃τ.( π → τ )
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Mϕ(u) = ? o/w.
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Monitorability of HyperLTL formulas
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U.

U11 = { , , }
U11 neither perm. satisfies nor violates ϕa = ∀π.∃τ.( π → τ )

Observation: There is no U that permanently satisfies or violates ϕa.

There’s no point in monitoring ϕa!
(Or something is wrong with our definitions . . . )

Definition (Agrawal & Bonakdarpour 2016)

A formula ϕ is (semantically) monitorable if every observation U has an
extension V � U, such that V perm. satisfies ϕ or V perm. violates ϕ.
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HyperLTL – Summary

• Properties defined over sets of traces.
⇒ Properties describe sets of sets of traces.
• Perfect monitors can be constructed for some formulas.

• For example, for formulas without quantifier alternations.
• But what about formulas with alternations?

• Most formulas are not monitorable.
• For example, ∀+∃+-properties are not!
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[1] S. Agrawal and B. Bonakdarpour. Runtime Verification of k-Safety Hyperproperties in
HyperLTL. CSF’16, IEEE CS Press, 2016.

[9] K. Havelund and D. Peled. Runtime Verification: From Propositional to First-Order Temporal
Logic. RV’18, Springer, 2018.

[8] C. Hahn. Algorithms for Monitoring Hyperproperties. RV’19, Springer, 2019.

13



HyperLTL – Summary

• Properties defined over sets of traces.
⇒ Properties describe sets of sets of traces.
• Perfect monitors can be constructed for some formulas.

• For example, for formulas without quantifier alternations.
• But what about formulas with alternations?

• Most formulas are not monitorable.
• For example, ∀+∃+-properties are not!

trace/hyper

black/gray

computability

[1] S. Agrawal and B. Bonakdarpour. Runtime Verification of k-Safety Hyperproperties in
HyperLTL. CSF’16, IEEE CS Press, 2016.

[9] K. Havelund and D. Peled. Runtime Verification: From Propositional to First-Order Temporal
Logic. RV’18, Springer, 2018.

[8] C. Hahn. Algorithms for Monitoring Hyperproperties. RV’19, Springer, 2019.

13



Gray-box monitoring (of hyperproperties)

trace/hyper

black/gray

computability

13



Why is ϕa not monitorable?

Theorem
No finite U permanently satisfies or violates ϕa = ∀π.∃τ.( π → τ ).

Proof. Given any U ∈ Pfin(Σ∗),
U doesn’t perm. violate ϕa U � Σω, and Σω |= ϕa because · · · ∈ Σω;
U doesn’t perm. satisfy ϕa define T as T = {t | t = u · · · for u ∈ U};

then U � T and T violates ϕa.

This theorem can be generalized to all formulas ϕ = ∀π.∃τ.P(π, τ) where P is
• a binary (non-temporal) predicate,
• serial,
• non-reflexive.

OK, but let’s have a closer look at this proof. . .
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Why is ϕa not monitorable?

Theorem
No finite U permanently satisfies or violates ϕa = ∀π.∃τ.( π → τ ).

Proof. Given any U ∈ Pfin(Σ∗),

U doesn’t perm. violate ϕa U � Σω, and Σω |= ϕa because · · · ∈ Σω ;
. . .

This step is somewhat dubious.

• Realistic systems don’t realize every possible trace.
• There is only a finite number of coffee dispensers in the world (sadly).

When monitoring hyperproperties, we’d like to take into account
some information about the system

(gray-box monitoring).
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Gray-box monitoring of HyperLTL properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation U.

Definition

A finite observation U ∈ Pfin(Σ∗) permanently satisfies (resp. violates) ϕ,
if every infinite extension of U satisfies (resp. violates) ϕ:

U perm. satisfies ϕ iff all T ∈ P(Σω) such that U � T satisfy ϕ

U perm. violates ϕ iff all T ∈ P(Σω) such that U � T violate ϕ

S = {T ∈ P(Σω) | |T| = 3} U = { , , }

U doesn’t perm. satisfy ∀π.∃τ.( π → τ )

U perm. violates ∀π.∃τ.( π → τ )
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Gray-box monitoring in general
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation O of a system S.

Definition
Given a set of system behaviors S ⊆ B,
a finite observation O ∈ O permanently satisfies (resp. violates) ϕ,
if every infinite extension of O in S satisfies (resp. violates) ϕ:

O perm. satisfies ϕ in S iff all B ∈ S such that O � B satisfy ϕ

O perm. violates ϕ in S iff all B ∈ S such that O � B violate ϕ

A formula ϕ is semantically gray-box monitorable for a system S if every
observation O has an extension P � O in S, such that P perm. satisfies ϕ in S or
P perm. violates ϕ in S.
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Gray-box monitors for ∀+∃+-properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation O of a system S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O → {3,7,?} that decides a verdict for ϕ given a finite O in S.

Assuming ϕ = ∀π.∃τ.ψ(π, τ), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T � U of a given U permanently violate ϕ.

Example: ϕa = ∀π.∃τ.( π → τ ) S = {T ∈ P(Σω) | |T| = 3}

Negate ϕa: ¬ϕa = ∃π.¬∃τ.( π → τ )

{ , } 7→ { · · · , · · · , · · · } ?

{ , , } 7→ ∅ 7

18



Gray-box monitors for ∀+∃+-properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation O of a system S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O → {3,7,?} that decides a verdict for ϕ given a finite O in S.

Assuming ϕ = ∀π.∃τ.ψ(π, τ), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T � U of a given U permanently violate ϕ.

Example: ϕa = ∀π.∃τ.( π → τ ) S = {T ∈ P(Σω) | |T| = 3}

Negate ϕa: ¬ϕa = ∃π.¬∃τ.( π → τ )

{ , } 7→ { · · · , · · · , · · · } ?

{ , , } 7→ ∅ 7

18



Gray-box monitors for ∀+∃+-properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation O of a system S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O → {3,7,?} that decides a verdict for ϕ given a finite O in S.

Assuming ϕ = ∀π.∃τ.ψ(π, τ), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T � U of a given U permanently violate ϕ.

Example: ϕa = ∀π.∃τ.( π → τ ) S = {T ∈ P(Σω) | |T| = 3}

Negate ϕa: ¬ϕa = ∃π.¬∃τ.( π → τ )

{ , } 7→ { · · · , · · · , · · · } ?

{ , , } 7→ ∅ 7

18



Gray-box monitors for ∀+∃+-properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation O of a system S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O → {3,7,?} that decides a verdict for ϕ given a finite O in S.

Assuming ϕ = ∀π.∃τ.ψ(π, τ), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T � U of a given U permanently violate ϕ.

Example: ϕa = ∀π.∃τ.( π → τ ) S = {T ∈ P(Σω) | |T| = 3}

Negate ϕa: ¬ϕa = ∃π.¬∃τ.( π → τ )

{ , } 7→ { · · · , · · · , · · · } ?

{ , , } 7→ ∅ 7

18



Gray-box monitors for ∀+∃+-properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation O of a system S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O → {3,7,?} that decides a verdict for ϕ given a finite O in S.

Assuming ϕ = ∀π.∃τ.ψ(π, τ), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T � U of a given U permanently violate ϕ.

Example: ϕa = ∀π.∃τ.( π → τ ) S = {T ∈ P(Σω) | |T| = 3}

Negate ϕa: ¬ϕa = ∃π.¬∃τ.( π → τ )

{ , } 7→ { · · · , · · · , · · · } ?

{ , , } 7→ ∅ 7

18



Gray-box monitors for ∀+∃+-properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation O of a system S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O → {3,7,?} that decides a verdict for ϕ given a finite O in S.

Assuming ϕ = ∀π.∃τ.ψ(π, τ), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T � U of a given U permanently violate ϕ.

Example: ϕa = ∀π.∃τ.( π → τ ) S = {T ∈ P(Σω) | |T| = 3}

Negate ϕa: ¬ϕa = ∃π.¬∃τ.( π → τ ) instantiate

{ , } 7→ { · · · , · · · , · · · } ?

{ , , } 7→ ∅ 7

18



Gray-box monitors for ∀+∃+-properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation O of a system S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O → {3,7,?} that decides a verdict for ϕ given a finite O in S.

Assuming ϕ = ∀π.∃τ.ψ(π, τ), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T � U of a given U permanently violate ϕ.

Example: ϕa = ∀π.∃τ.( π → τ ) S = {T ∈ P(Σω) | |T| = 3}

Negate ϕa: ¬ϕa = ∃π.¬∃τ.( π → τ ) instantiate solve

{ , } 7→ { · · · , · · · , · · · } ?

{ , , } 7→ ∅ 7

18



Gray-box monitors for ∀+∃+-properties
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation O of a system S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O → {3,7,?} that decides a verdict for ϕ given a finite O in S.

Assuming ϕ = ∀π.∃τ.ψ(π, τ), and a sufficiently restrictive S, we may be able to
statically prove that all extensions T � U of a given U permanently violate ϕ.

Example: ϕa = ∀π.∃τ.( π → τ ) S = {T ∈ P(Σω) | |T| = 3}

Negate ϕa: ¬ϕa = ∃π.¬∃τ.( π → τ ) instantiate solve

{ , } 7→ { · · · , · · · , · · · } ?

{ , , } 7→ ∅ 7

18



Gray-box monitoring – Summary

• Properties defined over observations (e.g. traces or sets of
traces).
⇒ Properties describe sets of observations.
• Perfect monitors can be constructed for some formulas.

• For example, for formulas without quantifier alternations (as
for black-box).

• But also for ∀+∃+-formulas when S imposes enough
constraints.

• Monitorability of formulas depends on set of valid system
behaviors S.
• For example, ∀+∃+-properties are monitorable for some

choices of S.
• We will see a more interesting example later. . .
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Undecidable hyperproperties
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Monitorability is not existence of monitors
A formula ϕ is semantically gray-box monitorable in S if every observation O has
an extension P � O that permanently satisfies or violates ϕ in S.

A monitor for a property ϕ and a system S is a computable function
Mϕ,S : O{3,7,?} that decides a verdict for ϕ given a finite O.

Observation: Monitorability of ϕ in S does not guarantee the existence of a perfect
monitor Mϕ,S .

Example: Let T be some Turing machine.

S = {t ∈ Σω | ti = the state of T after i steps}, ϕ =halt.

Because T is deterministic, either u perm. satisfies ϕ in S or
u perm. violates ϕ in S, for any u in S.
⇒ ϕ is monitorable in S;
⇒ but there is no perfect monitor Mϕ,S .
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Because T is deterministic, either u perm. satisfies ϕ in S or
u perm. violates ϕ in S, for any u in S.
⇒ ϕ is monitorable in S;
⇒ there is a sound monitor Mϕ,S that only answers 3 or ?!
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Case study: distributed data minimality
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Slide by David Basin, Can we Verify GDPR Compliance?, RV’19 keynote.
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Case study: distributed data minimality

Distributed data minimality (DDM)
• privacy property (GDPR)

Personal data shall be: [. . . ] adequate, relevant and limited to what is
necessary in relation to the purposes for which they are processed (‘data
minimization’);

– GDPR [5, Art. 5(1.c)]

• generalization of data minimality to a multi-input setting
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DDM example: toll road

Photos by Rauenstein, Radosław Drożdżewski, Chong Fat, Hesekiel (Wikipedia).
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DDM example: toll road

class Toll {
int rate(int hour, int passengers) {
int r; // standard rates:
if (hour >= 9 && hour <= 17) { r = 90; } // - daytime
else { r = 70; } // - nighttime
if (passengers > 2) { r = r - (r / 5); } // carpool: 20% off
return r;

}

int fee(int t1, int t2, int t3, int p) {
int r1 = rate(t1, p); // rates at each toll station
int r2 = rate(t2, p);
int r3 = rate(t3, p);
int f1 = max(r1, r2) * 4; // fees per road section
int f2 = max(r2, r3) * 7;
return f1 + f2; // total fee

}
}

23



Case study: distributed data minimality

• Distributed data minimality (DDM)
• privacy property (GDPR)
• generalization of data minimality to a multi-input setting
• ∀∀∃∃-hyperproperty

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)

• Challenges:
• Not black-box monitorable.
• Undecidable.
• Defined over arbitrary domains/datatypes.

Yet, we have a monitor [11]. . .
here’s how. . .
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Distributed data minimality

Definition (Antignac, Sands & Schneider, 2017)

A function f is distributed data-minimal (DDM) if, for all input positions k and all
x, y ∈ Ik such that x 6= y, there is some z ∈ I, such that f (z[k 7→ x]) 6= f (z[k 7→ y]).

Using the generalized framework
• Set of observable behaviors O = Σ#

f are valid function applications.
• Not black-box monitorable.
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Distributed data minimality

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→
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samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
ϕdm =

∧n
i=1 ϕi, Σ#

f = {(x, y) | f (x) = y}, Sf = P(Σ#
f )
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Distributed data minimality

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
ϕdm =

∧n
i=1 ϕi, Σ#

f = {(x, y) | f (x) = y}, Sf = P(Σ#
f )

Using the generalized framework
• Set of observable behaviors O = Σ#

f are valid function applications.
• Not black-box monitorable, but gray-box monitorable (thanks to S).
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A sound monitor for distributed data minimality

ϕi = ∀π.∀π′.∃τ.∃τ ′. ¬ samei(π, π
′)→

(
samei(π, τ) ∧ samei(π

′, τ ′) ∧
almosti(τ, τ

′) ∧ ¬ output(τ, τ ′)

)
ϕdm =

∧n
i=1 ϕi, Σ#

f = {(x, y) | f (x) = y}, Sf = P(Σ#
f )

We build a monitor

Mdm(U) =


? if f (uin) 6= uout for some u ∈ U,
? if

∧n
i=1
∧

u,u′∈U Nf ,i(proji(uin),proji(u′in)) 6= 7,

7 otherwise.

using an oracle Nf ,i(x, y) (implemented as symbolic execution + SMT solver):

Nf ,i(x, y) =

{
3 or ? if ∃z ∈ I. f (z[i 7→ x]) 6= f (z[i 7→ y]),

7 or ? otherwise.
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A sound monitor for distributed data minimality
We build a monitor

Mdm(U) =


? if f (uin) 6= uout for some u ∈ U,
? if

∧n
i=1
∧

u,u′∈U Nf ,i(proji(uin), proji(u′in)) 6= 7,

7 otherwise.

using an oracle Nf ,i(x, y) (implemented as symbolic execution + SMT solver):

Nf ,i(x, y) =

{
3 or ? if ∃z ∈ I. f (z[i 7→ x]) 6= f (z[i 7→ y]),

7 or ? otherwise.

The monitor is sound but not perfect.
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Please do try this at home!

https://github.com/sstucki/minion/
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Thank you!

Coauthors

• César Sánchez, IMDEA SW
• Borzoo Bonakdarpour, ISU
• Gerardo Schneider, GU/Chalmers

Checkout the minion monitor for data minimality

https://github.com/sstucki/minion/
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Trace properties – LTL

ϕs =  ϕl = ϕr = 

t1 = · · · t1 |= ϕs t1 |= ϕl t1 |= ϕr

t2 = · · · t2 6|= ϕs t2 |= ϕl t2 6|= ϕr

t3 = · · · t3 6|= ϕs t3 |= ϕl t3 |= ϕr

ϕ ::= a
∣∣¬ϕ ∣∣ϕ ∨ ϕ ∣∣ϕ ∣∣ϕ U ϕ ϕ ≡ true U ϕ ϕ ≡ ¬¬ϕ

t |= p iff p ∈ t[0]
t |= ¬ϕ iff t 6|= ϕ
t |= ϕ1 ∨ ϕ2 iff t |= ϕ1 or t |= ϕ2
t |= ϕ iff t[1, ..] |= ϕ
t |= ϕ1 U ϕ2 iff for some i, t[i, ..] |= ϕ2 and for all j < i, t[j, ..] |= ϕ1
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Monitoring LTL

ϕs =  ϕl = ϕr = 

• Observation: the world today at 10am

u10 =

• Update: the world at 11am

u11 =

ϕs Is there always coffee? u10 → ? , u11 → 7

ϕl Is there eventually coffee? u10 → 3, u11 → 3

ϕr Is there always eventually coffee? u10 → ? , u11 → ?
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Monitoring LTL
Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), at runtime.

Definition
A finite observation u permanently satisfies (resp. violates) ϕ, if every infinite extension of u satisfies
(resp. violates) ϕ:

u perm. satisfies ϕ iff all t ∈ Σω such that u � t satisfy ϕ

u perm. violates ϕ iff all t ∈ Σω such that u � t violate ϕ

u11 =

u11 doesn’t perm. satisfy  u11 perm. violates 

u11 perm. satisfies u11 doesn’t perm. violate

u11 neither perm. satisfies nor violates 
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Monitors for LTL

Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation u.

A monitor for a property ϕ is a computable function Mϕ : Σ∗ → {3,7,?} that
decides a verdict for ϕ given a finite u.

The monitor Mϕ is sound if

u perm. satisfies ϕ if Mϕ(u) = 3, u perm. violates ϕ if Mϕ(u) = 7

The monitor Mϕ is perfect if, additionally,

Mϕ(u) = 3 if u perm. satisfies ϕ, Mϕ(u) = 7 if u perm. violates ϕ,
Mϕ(u) = ? o/w.

Fact: every LTL formula has a perfect monitor.
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Monitorability of LTL formulas

Monitoring: decide whether a given property ϕ is permanently satisfied (3),
violated (7), or neither (?), given a finite observation u.

ϕr =  u11 =

u11 doesn’t perm. satisfy ϕr u11 doesn’t perm. violate ϕr

Observation: There is no u that permanently satisfies or violates ϕr.

There’s no point in monitoring ϕr!

Definition (Pnueli & Zaks 2006)

A formula ϕ is (semantically) monitorable if every observation u has an
extension v � u, such that either v perm. satisfies ϕ or v perm. violates ϕ.
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