
A Theory of Higher-Order Subtyping with Type Intervals

Sandro Stucki Paolo G. Giarrusso

ICPF 2021 – 22–27 Aug 2021
sandros@chalmers.se @stuckintheory

sandros@chalmers.se
@stuckintheory

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 1

DOT and Dotty

DOT

• a minimal core calculus for Scala
• proven type-safe (in Coq)
• does not support HK types

WadlerFest, April 2016

The Essence of Dependent Object Types

Nada Amin1, Samuel Grütter1, Martin Odersky1(B), Tiark Rompf2,
and Sandro Stucki1

1 EPFL, Lausanne, Switzerland
{nada.amin,samuel.grutter,martin.odersky,sandro.stucki}@epfl.ch

2 Purdue University, West Lafayette, USA
tiark@purdue.edu

Abstract. Focusing on path-dependent types, the paper develops foun-
dations for Scala from first principles. Starting from a simple calculus
D<: of dependent functions, it adds records, intersections and recursion
to arrive at DOT, a calculus for dependent object types. The paper shows
an encoding of System F with subtyping in D<: and demonstrates the
expressiveness of DOT by modeling a range of Scala constructs in it.

Keywords: Calculus · Dependent types · Scala

1 Introduction

While hiking together in the French alps in 2013, Martin Odersky tried to
explain to Phil Wadler why languages like Scala had foundations that were
not directly related via the Curry-Howard isomorphism to logic. This did not
go over well. As you would expect, Phil strongly disapproved. He argued that
anything that was useful should have a grounding in logic. In this paper, we try
to approach this goal.

We will develop a foundation for Scala from first principles. Scala is a func-
tional language that expresses central aspects of modules as first-class terms and
types. It identifies modules with objects and signatures with traits. For instance,
here is a trait Keys that defines an abstract type Key and a way to retrieve a
key from a string.

trait Keys {
type Key
def key(data: String): Key

}

A concrete implementation of Keys could be

object HashKeys extends Keys {
type Key = Int
def key(s: String) = s.hashCode

}

c© Springer International Publishing Switzerland 2016
S. Lindley et al. (Eds.): Wadler Festschrift, LNCS 9600, pp. 249–272, 2016.
DOI: 10.1007/978-3-319-30936-1 14

Dotty/Scala 3

• a Scala compiler based on DOT
• type safety unclear
• does support HK types

Scala Symposium, Oct 2016

Implementing Higher-Kinded Types in Dotty

Martin Odersky, Guillaume Martres, Dmitry Petrashko
EPFL, Switerland: {first.last}@epfl.ch

Abstract
dotty is a new, experimental Scala compiler based on DOT,
the calculus of Dependent Object Types. Higher-kinded
types are a natural extension of first-order lambda calculus,
and have been a core construct of Haskell and Scala. As long
as such types are just partial applications of generic classes,
they can be given a meaning in DOT relatively straightfor-
wardly. But general lambdas on the type level require ex-
tensions of the DOT calculus to be expressible. This paper
is an experience report where we describe and discuss four
implementation strategies that we have tried out in the last
three years. Each strategy was fully implemented in the dotty
compiler. We discuss the usability and expressive power of
each scheme, and give some indications about the amount of
implementation difficulties encountered.

Categories and Subject Descriptors D.3.3 [Language
Constructs and Features]: Polymorphism

General Terms Languages, Compilers, Experimentation

Keywords type constructor polymorphism, higher-kinded
types, higher-order genericity, Scala, dotty, DOT, dependent
object types

1. Introduction
Scala has first-class support for higher-kinded types [3], they
can be defined by users as follows:

type Foo[A] = List[A] // Foo has kind * -> *

and abstracted over:

def return[F[_], A](x: A): M[A]
type Bar[M[_]] = M[Int] // Bar has kind (* -> *) -> *

Implementing sound support for these higher-kinded
types in dotty [5] without restricting their expressive power

proved to be challenging, so much so that we evaluated four
different strategies before settling on the current direct rep-
resentation encoding. The strategies are summarized as fol-
lows:

• A simple encoding in the DOT-inspired [9] core type
structures that can express partial applications and not
much more

• A direct representation that adds support for full type
lambdas and higher-kinded applications, without re-
using much of the existing concepts of the calculus and
the compiler.

• A projection encoding, that encodes higher-kinded types
as first-order generic types using type projections T#A.

• A refinement encoding, that encodes higher-kinded types
as first-order generic types using refinements and path-
dependent types.

Neither of the encodings is fully transparent, in that some
type checking operations still needed special provisions for
encoded types.

These four strategies were implemented in the dotty re-
search compiler for Scala over the course of three years
(2013-2016). The purpose of the present paper is to give
a high-level overview of the implementations and the lan-
guage design choices they entail.

The perspective of the paper is experimental rather than
theoretical. One can regard it as a kind of lab notebook
describing and contrasting different experiments. The raw
data for the experiments exists in the form of commits in
the repository ‘lampepfl/dotty‘ on GitHub. Given the con-
siderable implementation effort that went into higher-kinded
types we wanted to create a record of what was done, what
worked out, and what did not work as well as hoped for.
Overall, it’s fair to say that there were more failed than suc-
cessful experiments, but failures are at least as important to
record as successes.

The rest of this paper is organized as follows. Section 3
describes the simple encoding of partial applications into
core DOT. Section 4 describes the direct representation of
higher kinded types. Section 5 and Section 6 describe two
encodings based on projections and refinements, respec-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

SCALA’16, October 30–31, 2016, Amsterdam, Netherlands
ACM. 978-1-4503-4648-1/16/10...$15.00
http://dx.doi.org/10.1145/2998392.2998400

51

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 2

DOT and Dotty

DOT

• a minimal core calculus for Scala

• proven type-safe (in Coq)
• does not support HK types

WadlerFest, April 2016

The Essence of Dependent Object Types

Nada Amin1, Samuel Grütter1, Martin Odersky1(B), Tiark Rompf2,
and Sandro Stucki1

1 EPFL, Lausanne, Switzerland
{nada.amin,samuel.grutter,martin.odersky,sandro.stucki}@epfl.ch

2 Purdue University, West Lafayette, USA
tiark@purdue.edu

Abstract. Focusing on path-dependent types, the paper develops foun-
dations for Scala from first principles. Starting from a simple calculus
D<: of dependent functions, it adds records, intersections and recursion
to arrive at DOT, a calculus for dependent object types. The paper shows
an encoding of System F with subtyping in D<: and demonstrates the
expressiveness of DOT by modeling a range of Scala constructs in it.

Keywords: Calculus · Dependent types · Scala

1 Introduction

While hiking together in the French alps in 2013, Martin Odersky tried to
explain to Phil Wadler why languages like Scala had foundations that were
not directly related via the Curry-Howard isomorphism to logic. This did not
go over well. As you would expect, Phil strongly disapproved. He argued that
anything that was useful should have a grounding in logic. In this paper, we try
to approach this goal.

We will develop a foundation for Scala from first principles. Scala is a func-
tional language that expresses central aspects of modules as first-class terms and
types. It identifies modules with objects and signatures with traits. For instance,
here is a trait Keys that defines an abstract type Key and a way to retrieve a
key from a string.

trait Keys {
type Key
def key(data: String): Key

}

A concrete implementation of Keys could be

object HashKeys extends Keys {
type Key = Int
def key(s: String) = s.hashCode

}

c© Springer International Publishing Switzerland 2016
S. Lindley et al. (Eds.): Wadler Festschrift, LNCS 9600, pp. 249–272, 2016.
DOI: 10.1007/978-3-319-30936-1 14

Dotty/Scala 3

• a Scala compiler based on DOT
• type safety unclear
• does support HK types

Scala Symposium, Oct 2016

Implementing Higher-Kinded Types in Dotty

Martin Odersky, Guillaume Martres, Dmitry Petrashko
EPFL, Switerland: {first.last}@epfl.ch

Abstract
dotty is a new, experimental Scala compiler based on DOT,
the calculus of Dependent Object Types. Higher-kinded
types are a natural extension of first-order lambda calculus,
and have been a core construct of Haskell and Scala. As long
as such types are just partial applications of generic classes,
they can be given a meaning in DOT relatively straightfor-
wardly. But general lambdas on the type level require ex-
tensions of the DOT calculus to be expressible. This paper
is an experience report where we describe and discuss four
implementation strategies that we have tried out in the last
three years. Each strategy was fully implemented in the dotty
compiler. We discuss the usability and expressive power of
each scheme, and give some indications about the amount of
implementation difficulties encountered.

Categories and Subject Descriptors D.3.3 [Language
Constructs and Features]: Polymorphism

General Terms Languages, Compilers, Experimentation

Keywords type constructor polymorphism, higher-kinded
types, higher-order genericity, Scala, dotty, DOT, dependent
object types

1. Introduction
Scala has first-class support for higher-kinded types [3], they
can be defined by users as follows:

type Foo[A] = List[A] // Foo has kind * -> *

and abstracted over:

def return[F[_], A](x: A): M[A]
type Bar[M[_]] = M[Int] // Bar has kind (* -> *) -> *

Implementing sound support for these higher-kinded
types in dotty [5] without restricting their expressive power

proved to be challenging, so much so that we evaluated four
different strategies before settling on the current direct rep-
resentation encoding. The strategies are summarized as fol-
lows:

• A simple encoding in the DOT-inspired [9] core type
structures that can express partial applications and not
much more

• A direct representation that adds support for full type
lambdas and higher-kinded applications, without re-
using much of the existing concepts of the calculus and
the compiler.

• A projection encoding, that encodes higher-kinded types
as first-order generic types using type projections T#A.

• A refinement encoding, that encodes higher-kinded types
as first-order generic types using refinements and path-
dependent types.

Neither of the encodings is fully transparent, in that some
type checking operations still needed special provisions for
encoded types.

These four strategies were implemented in the dotty re-
search compiler for Scala over the course of three years
(2013-2016). The purpose of the present paper is to give
a high-level overview of the implementations and the lan-
guage design choices they entail.

The perspective of the paper is experimental rather than
theoretical. One can regard it as a kind of lab notebook
describing and contrasting different experiments. The raw
data for the experiments exists in the form of commits in
the repository ‘lampepfl/dotty‘ on GitHub. Given the con-
siderable implementation effort that went into higher-kinded
types we wanted to create a record of what was done, what
worked out, and what did not work as well as hoped for.
Overall, it’s fair to say that there were more failed than suc-
cessful experiments, but failures are at least as important to
record as successes.

The rest of this paper is organized as follows. Section 3
describes the simple encoding of partial applications into
core DOT. Section 4 describes the direct representation of
higher kinded types. Section 5 and Section 6 describe two
encodings based on projections and refinements, respec-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

SCALA’16, October 30–31, 2016, Amsterdam, Netherlands
ACM. 978-1-4503-4648-1/16/10...$15.00
http://dx.doi.org/10.1145/2998392.2998400

51

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 2

DOT and Dotty

DOT

• a minimal core calculus for Scala
• proven type-safe (in Coq)

• does not support HK types

WadlerFest, April 2016

The Essence of Dependent Object Types

Nada Amin1, Samuel Grütter1, Martin Odersky1(B), Tiark Rompf2,
and Sandro Stucki1

1 EPFL, Lausanne, Switzerland
{nada.amin,samuel.grutter,martin.odersky,sandro.stucki}@epfl.ch

2 Purdue University, West Lafayette, USA
tiark@purdue.edu

Abstract. Focusing on path-dependent types, the paper develops foun-
dations for Scala from first principles. Starting from a simple calculus
D<: of dependent functions, it adds records, intersections and recursion
to arrive at DOT, a calculus for dependent object types. The paper shows
an encoding of System F with subtyping in D<: and demonstrates the
expressiveness of DOT by modeling a range of Scala constructs in it.

Keywords: Calculus · Dependent types · Scala

1 Introduction

While hiking together in the French alps in 2013, Martin Odersky tried to
explain to Phil Wadler why languages like Scala had foundations that were
not directly related via the Curry-Howard isomorphism to logic. This did not
go over well. As you would expect, Phil strongly disapproved. He argued that
anything that was useful should have a grounding in logic. In this paper, we try
to approach this goal.

We will develop a foundation for Scala from first principles. Scala is a func-
tional language that expresses central aspects of modules as first-class terms and
types. It identifies modules with objects and signatures with traits. For instance,
here is a trait Keys that defines an abstract type Key and a way to retrieve a
key from a string.

trait Keys {
type Key
def key(data: String): Key

}

A concrete implementation of Keys could be

object HashKeys extends Keys {
type Key = Int
def key(s: String) = s.hashCode

}

c© Springer International Publishing Switzerland 2016
S. Lindley et al. (Eds.): Wadler Festschrift, LNCS 9600, pp. 249–272, 2016.
DOI: 10.1007/978-3-319-30936-1 14

Dotty/Scala 3

• a Scala compiler based on DOT
• type safety unclear
• does support HK types

Scala Symposium, Oct 2016

Implementing Higher-Kinded Types in Dotty

Martin Odersky, Guillaume Martres, Dmitry Petrashko
EPFL, Switerland: {first.last}@epfl.ch

Abstract
dotty is a new, experimental Scala compiler based on DOT,
the calculus of Dependent Object Types. Higher-kinded
types are a natural extension of first-order lambda calculus,
and have been a core construct of Haskell and Scala. As long
as such types are just partial applications of generic classes,
they can be given a meaning in DOT relatively straightfor-
wardly. But general lambdas on the type level require ex-
tensions of the DOT calculus to be expressible. This paper
is an experience report where we describe and discuss four
implementation strategies that we have tried out in the last
three years. Each strategy was fully implemented in the dotty
compiler. We discuss the usability and expressive power of
each scheme, and give some indications about the amount of
implementation difficulties encountered.

Categories and Subject Descriptors D.3.3 [Language
Constructs and Features]: Polymorphism

General Terms Languages, Compilers, Experimentation

Keywords type constructor polymorphism, higher-kinded
types, higher-order genericity, Scala, dotty, DOT, dependent
object types

1. Introduction
Scala has first-class support for higher-kinded types [3], they
can be defined by users as follows:

type Foo[A] = List[A] // Foo has kind * -> *

and abstracted over:

def return[F[_], A](x: A): M[A]
type Bar[M[_]] = M[Int] // Bar has kind (* -> *) -> *

Implementing sound support for these higher-kinded
types in dotty [5] without restricting their expressive power

proved to be challenging, so much so that we evaluated four
different strategies before settling on the current direct rep-
resentation encoding. The strategies are summarized as fol-
lows:

• A simple encoding in the DOT-inspired [9] core type
structures that can express partial applications and not
much more

• A direct representation that adds support for full type
lambdas and higher-kinded applications, without re-
using much of the existing concepts of the calculus and
the compiler.

• A projection encoding, that encodes higher-kinded types
as first-order generic types using type projections T#A.

• A refinement encoding, that encodes higher-kinded types
as first-order generic types using refinements and path-
dependent types.

Neither of the encodings is fully transparent, in that some
type checking operations still needed special provisions for
encoded types.

These four strategies were implemented in the dotty re-
search compiler for Scala over the course of three years
(2013-2016). The purpose of the present paper is to give
a high-level overview of the implementations and the lan-
guage design choices they entail.

The perspective of the paper is experimental rather than
theoretical. One can regard it as a kind of lab notebook
describing and contrasting different experiments. The raw
data for the experiments exists in the form of commits in
the repository ‘lampepfl/dotty‘ on GitHub. Given the con-
siderable implementation effort that went into higher-kinded
types we wanted to create a record of what was done, what
worked out, and what did not work as well as hoped for.
Overall, it’s fair to say that there were more failed than suc-
cessful experiments, but failures are at least as important to
record as successes.

The rest of this paper is organized as follows. Section 3
describes the simple encoding of partial applications into
core DOT. Section 4 describes the direct representation of
higher kinded types. Section 5 and Section 6 describe two
encodings based on projections and refinements, respec-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

SCALA’16, October 30–31, 2016, Amsterdam, Netherlands
ACM. 978-1-4503-4648-1/16/10...$15.00
http://dx.doi.org/10.1145/2998392.2998400

51

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 2

DOT and Dotty

DOT

• a minimal core calculus for Scala
• proven type-safe (in Coq)
• does not support HK types

WadlerFest, April 2016

The Essence of Dependent Object Types

Nada Amin1, Samuel Grütter1, Martin Odersky1(B), Tiark Rompf2,
and Sandro Stucki1

1 EPFL, Lausanne, Switzerland
{nada.amin,samuel.grutter,martin.odersky,sandro.stucki}@epfl.ch

2 Purdue University, West Lafayette, USA
tiark@purdue.edu

Abstract. Focusing on path-dependent types, the paper develops foun-
dations for Scala from first principles. Starting from a simple calculus
D<: of dependent functions, it adds records, intersections and recursion
to arrive at DOT, a calculus for dependent object types. The paper shows
an encoding of System F with subtyping in D<: and demonstrates the
expressiveness of DOT by modeling a range of Scala constructs in it.

Keywords: Calculus · Dependent types · Scala

1 Introduction

While hiking together in the French alps in 2013, Martin Odersky tried to
explain to Phil Wadler why languages like Scala had foundations that were
not directly related via the Curry-Howard isomorphism to logic. This did not
go over well. As you would expect, Phil strongly disapproved. He argued that
anything that was useful should have a grounding in logic. In this paper, we try
to approach this goal.

We will develop a foundation for Scala from first principles. Scala is a func-
tional language that expresses central aspects of modules as first-class terms and
types. It identifies modules with objects and signatures with traits. For instance,
here is a trait Keys that defines an abstract type Key and a way to retrieve a
key from a string.

trait Keys {
type Key
def key(data: String): Key

}

A concrete implementation of Keys could be

object HashKeys extends Keys {
type Key = Int
def key(s: String) = s.hashCode

}

c© Springer International Publishing Switzerland 2016
S. Lindley et al. (Eds.): Wadler Festschrift, LNCS 9600, pp. 249–272, 2016.
DOI: 10.1007/978-3-319-30936-1 14

Dotty/Scala 3

• a Scala compiler based on DOT
• type safety unclear
• does support HK types

Scala Symposium, Oct 2016

Implementing Higher-Kinded Types in Dotty

Martin Odersky, Guillaume Martres, Dmitry Petrashko
EPFL, Switerland: {first.last}@epfl.ch

Abstract
dotty is a new, experimental Scala compiler based on DOT,
the calculus of Dependent Object Types. Higher-kinded
types are a natural extension of first-order lambda calculus,
and have been a core construct of Haskell and Scala. As long
as such types are just partial applications of generic classes,
they can be given a meaning in DOT relatively straightfor-
wardly. But general lambdas on the type level require ex-
tensions of the DOT calculus to be expressible. This paper
is an experience report where we describe and discuss four
implementation strategies that we have tried out in the last
three years. Each strategy was fully implemented in the dotty
compiler. We discuss the usability and expressive power of
each scheme, and give some indications about the amount of
implementation difficulties encountered.

Categories and Subject Descriptors D.3.3 [Language
Constructs and Features]: Polymorphism

General Terms Languages, Compilers, Experimentation

Keywords type constructor polymorphism, higher-kinded
types, higher-order genericity, Scala, dotty, DOT, dependent
object types

1. Introduction
Scala has first-class support for higher-kinded types [3], they
can be defined by users as follows:

type Foo[A] = List[A] // Foo has kind * -> *

and abstracted over:

def return[F[_], A](x: A): M[A]
type Bar[M[_]] = M[Int] // Bar has kind (* -> *) -> *

Implementing sound support for these higher-kinded
types in dotty [5] without restricting their expressive power

proved to be challenging, so much so that we evaluated four
different strategies before settling on the current direct rep-
resentation encoding. The strategies are summarized as fol-
lows:

• A simple encoding in the DOT-inspired [9] core type
structures that can express partial applications and not
much more

• A direct representation that adds support for full type
lambdas and higher-kinded applications, without re-
using much of the existing concepts of the calculus and
the compiler.

• A projection encoding, that encodes higher-kinded types
as first-order generic types using type projections T#A.

• A refinement encoding, that encodes higher-kinded types
as first-order generic types using refinements and path-
dependent types.

Neither of the encodings is fully transparent, in that some
type checking operations still needed special provisions for
encoded types.

These four strategies were implemented in the dotty re-
search compiler for Scala over the course of three years
(2013-2016). The purpose of the present paper is to give
a high-level overview of the implementations and the lan-
guage design choices they entail.

The perspective of the paper is experimental rather than
theoretical. One can regard it as a kind of lab notebook
describing and contrasting different experiments. The raw
data for the experiments exists in the form of commits in
the repository ‘lampepfl/dotty‘ on GitHub. Given the con-
siderable implementation effort that went into higher-kinded
types we wanted to create a record of what was done, what
worked out, and what did not work as well as hoped for.
Overall, it’s fair to say that there were more failed than suc-
cessful experiments, but failures are at least as important to
record as successes.

The rest of this paper is organized as follows. Section 3
describes the simple encoding of partial applications into
core DOT. Section 4 describes the direct representation of
higher kinded types. Section 5 and Section 6 describe two
encodings based on projections and refinements, respec-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

SCALA’16, October 30–31, 2016, Amsterdam, Netherlands
ACM. 978-1-4503-4648-1/16/10...$15.00
http://dx.doi.org/10.1145/2998392.2998400

51

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 2

DOT and Dotty

DOT

• a minimal core calculus for Scala
• proven type-safe (in Coq)
• does not support HK types

WadlerFest, April 2016

The Essence of Dependent Object Types

Nada Amin1, Samuel Grütter1, Martin Odersky1(B), Tiark Rompf2,
and Sandro Stucki1

1 EPFL, Lausanne, Switzerland
{nada.amin,samuel.grutter,martin.odersky,sandro.stucki}@epfl.ch

2 Purdue University, West Lafayette, USA
tiark@purdue.edu

Abstract. Focusing on path-dependent types, the paper develops foun-
dations for Scala from first principles. Starting from a simple calculus
D<: of dependent functions, it adds records, intersections and recursion
to arrive at DOT, a calculus for dependent object types. The paper shows
an encoding of System F with subtyping in D<: and demonstrates the
expressiveness of DOT by modeling a range of Scala constructs in it.

Keywords: Calculus · Dependent types · Scala

1 Introduction

While hiking together in the French alps in 2013, Martin Odersky tried to
explain to Phil Wadler why languages like Scala had foundations that were
not directly related via the Curry-Howard isomorphism to logic. This did not
go over well. As you would expect, Phil strongly disapproved. He argued that
anything that was useful should have a grounding in logic. In this paper, we try
to approach this goal.

We will develop a foundation for Scala from first principles. Scala is a func-
tional language that expresses central aspects of modules as first-class terms and
types. It identifies modules with objects and signatures with traits. For instance,
here is a trait Keys that defines an abstract type Key and a way to retrieve a
key from a string.

trait Keys {
type Key
def key(data: String): Key

}

A concrete implementation of Keys could be

object HashKeys extends Keys {
type Key = Int
def key(s: String) = s.hashCode

}

c© Springer International Publishing Switzerland 2016
S. Lindley et al. (Eds.): Wadler Festschrift, LNCS 9600, pp. 249–272, 2016.
DOI: 10.1007/978-3-319-30936-1 14

Dotty/Scala 3

• a Scala compiler based on DOT
• type safety unclear
• does support HK types

Scala Symposium, Oct 2016

Implementing Higher-Kinded Types in Dotty

Martin Odersky, Guillaume Martres, Dmitry Petrashko
EPFL, Switerland: {first.last}@epfl.ch

Abstract
dotty is a new, experimental Scala compiler based on DOT,
the calculus of Dependent Object Types. Higher-kinded
types are a natural extension of first-order lambda calculus,
and have been a core construct of Haskell and Scala. As long
as such types are just partial applications of generic classes,
they can be given a meaning in DOT relatively straightfor-
wardly. But general lambdas on the type level require ex-
tensions of the DOT calculus to be expressible. This paper
is an experience report where we describe and discuss four
implementation strategies that we have tried out in the last
three years. Each strategy was fully implemented in the dotty
compiler. We discuss the usability and expressive power of
each scheme, and give some indications about the amount of
implementation difficulties encountered.

Categories and Subject Descriptors D.3.3 [Language
Constructs and Features]: Polymorphism

General Terms Languages, Compilers, Experimentation

Keywords type constructor polymorphism, higher-kinded
types, higher-order genericity, Scala, dotty, DOT, dependent
object types

1. Introduction
Scala has first-class support for higher-kinded types [3], they
can be defined by users as follows:

type Foo[A] = List[A] // Foo has kind * -> *

and abstracted over:

def return[F[_], A](x: A): M[A]
type Bar[M[_]] = M[Int] // Bar has kind (* -> *) -> *

Implementing sound support for these higher-kinded
types in dotty [5] without restricting their expressive power

proved to be challenging, so much so that we evaluated four
different strategies before settling on the current direct rep-
resentation encoding. The strategies are summarized as fol-
lows:

• A simple encoding in the DOT-inspired [9] core type
structures that can express partial applications and not
much more

• A direct representation that adds support for full type
lambdas and higher-kinded applications, without re-
using much of the existing concepts of the calculus and
the compiler.

• A projection encoding, that encodes higher-kinded types
as first-order generic types using type projections T#A.

• A refinement encoding, that encodes higher-kinded types
as first-order generic types using refinements and path-
dependent types.

Neither of the encodings is fully transparent, in that some
type checking operations still needed special provisions for
encoded types.

These four strategies were implemented in the dotty re-
search compiler for Scala over the course of three years
(2013-2016). The purpose of the present paper is to give
a high-level overview of the implementations and the lan-
guage design choices they entail.

The perspective of the paper is experimental rather than
theoretical. One can regard it as a kind of lab notebook
describing and contrasting different experiments. The raw
data for the experiments exists in the form of commits in
the repository ‘lampepfl/dotty‘ on GitHub. Given the con-
siderable implementation effort that went into higher-kinded
types we wanted to create a record of what was done, what
worked out, and what did not work as well as hoped for.
Overall, it’s fair to say that there were more failed than suc-
cessful experiments, but failures are at least as important to
record as successes.

The rest of this paper is organized as follows. Section 3
describes the simple encoding of partial applications into
core DOT. Section 4 describes the direct representation of
higher kinded types. Section 5 and Section 6 describe two
encodings based on projections and refinements, respec-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

SCALA’16, October 30–31, 2016, Amsterdam, Netherlands
ACM. 978-1-4503-4648-1/16/10...$15.00
http://dx.doi.org/10.1145/2998392.2998400

51

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 2

DOT and Dotty

DOT

• a minimal core calculus for Scala
• proven type-safe (in Coq)
• does not support HK types

WadlerFest, April 2016

The Essence of Dependent Object Types

Nada Amin1, Samuel Grütter1, Martin Odersky1(B), Tiark Rompf2,
and Sandro Stucki1

1 EPFL, Lausanne, Switzerland
{nada.amin,samuel.grutter,martin.odersky,sandro.stucki}@epfl.ch

2 Purdue University, West Lafayette, USA
tiark@purdue.edu

Abstract. Focusing on path-dependent types, the paper develops foun-
dations for Scala from first principles. Starting from a simple calculus
D<: of dependent functions, it adds records, intersections and recursion
to arrive at DOT, a calculus for dependent object types. The paper shows
an encoding of System F with subtyping in D<: and demonstrates the
expressiveness of DOT by modeling a range of Scala constructs in it.

Keywords: Calculus · Dependent types · Scala

1 Introduction

While hiking together in the French alps in 2013, Martin Odersky tried to
explain to Phil Wadler why languages like Scala had foundations that were
not directly related via the Curry-Howard isomorphism to logic. This did not
go over well. As you would expect, Phil strongly disapproved. He argued that
anything that was useful should have a grounding in logic. In this paper, we try
to approach this goal.

We will develop a foundation for Scala from first principles. Scala is a func-
tional language that expresses central aspects of modules as first-class terms and
types. It identifies modules with objects and signatures with traits. For instance,
here is a trait Keys that defines an abstract type Key and a way to retrieve a
key from a string.

trait Keys {
type Key
def key(data: String): Key

}

A concrete implementation of Keys could be

object HashKeys extends Keys {
type Key = Int
def key(s: String) = s.hashCode

}

c© Springer International Publishing Switzerland 2016
S. Lindley et al. (Eds.): Wadler Festschrift, LNCS 9600, pp. 249–272, 2016.
DOI: 10.1007/978-3-319-30936-1 14

Dotty/Scala 3

• a Scala compiler based on DOT

• type safety unclear
• does support HK types

Scala Symposium, Oct 2016

Implementing Higher-Kinded Types in Dotty

Martin Odersky, Guillaume Martres, Dmitry Petrashko
EPFL, Switerland: {first.last}@epfl.ch

Abstract
dotty is a new, experimental Scala compiler based on DOT,
the calculus of Dependent Object Types. Higher-kinded
types are a natural extension of first-order lambda calculus,
and have been a core construct of Haskell and Scala. As long
as such types are just partial applications of generic classes,
they can be given a meaning in DOT relatively straightfor-
wardly. But general lambdas on the type level require ex-
tensions of the DOT calculus to be expressible. This paper
is an experience report where we describe and discuss four
implementation strategies that we have tried out in the last
three years. Each strategy was fully implemented in the dotty
compiler. We discuss the usability and expressive power of
each scheme, and give some indications about the amount of
implementation difficulties encountered.

Categories and Subject Descriptors D.3.3 [Language
Constructs and Features]: Polymorphism

General Terms Languages, Compilers, Experimentation

Keywords type constructor polymorphism, higher-kinded
types, higher-order genericity, Scala, dotty, DOT, dependent
object types

1. Introduction
Scala has first-class support for higher-kinded types [3], they
can be defined by users as follows:

type Foo[A] = List[A] // Foo has kind * -> *

and abstracted over:

def return[F[_], A](x: A): M[A]
type Bar[M[_]] = M[Int] // Bar has kind (* -> *) -> *

Implementing sound support for these higher-kinded
types in dotty [5] without restricting their expressive power

proved to be challenging, so much so that we evaluated four
different strategies before settling on the current direct rep-
resentation encoding. The strategies are summarized as fol-
lows:

• A simple encoding in the DOT-inspired [9] core type
structures that can express partial applications and not
much more

• A direct representation that adds support for full type
lambdas and higher-kinded applications, without re-
using much of the existing concepts of the calculus and
the compiler.

• A projection encoding, that encodes higher-kinded types
as first-order generic types using type projections T#A.

• A refinement encoding, that encodes higher-kinded types
as first-order generic types using refinements and path-
dependent types.

Neither of the encodings is fully transparent, in that some
type checking operations still needed special provisions for
encoded types.

These four strategies were implemented in the dotty re-
search compiler for Scala over the course of three years
(2013-2016). The purpose of the present paper is to give
a high-level overview of the implementations and the lan-
guage design choices they entail.

The perspective of the paper is experimental rather than
theoretical. One can regard it as a kind of lab notebook
describing and contrasting different experiments. The raw
data for the experiments exists in the form of commits in
the repository ‘lampepfl/dotty‘ on GitHub. Given the con-
siderable implementation effort that went into higher-kinded
types we wanted to create a record of what was done, what
worked out, and what did not work as well as hoped for.
Overall, it’s fair to say that there were more failed than suc-
cessful experiments, but failures are at least as important to
record as successes.

The rest of this paper is organized as follows. Section 3
describes the simple encoding of partial applications into
core DOT. Section 4 describes the direct representation of
higher kinded types. Section 5 and Section 6 describe two
encodings based on projections and refinements, respec-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

SCALA’16, October 30–31, 2016, Amsterdam, Netherlands
ACM. 978-1-4503-4648-1/16/10...$15.00
http://dx.doi.org/10.1145/2998392.2998400

51

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 2

DOT and Dotty

DOT

• a minimal core calculus for Scala
• proven type-safe (in Coq)
• does not support HK types

WadlerFest, April 2016

The Essence of Dependent Object Types

Nada Amin1, Samuel Grütter1, Martin Odersky1(B), Tiark Rompf2,
and Sandro Stucki1

1 EPFL, Lausanne, Switzerland
{nada.amin,samuel.grutter,martin.odersky,sandro.stucki}@epfl.ch

2 Purdue University, West Lafayette, USA
tiark@purdue.edu

Abstract. Focusing on path-dependent types, the paper develops foun-
dations for Scala from first principles. Starting from a simple calculus
D<: of dependent functions, it adds records, intersections and recursion
to arrive at DOT, a calculus for dependent object types. The paper shows
an encoding of System F with subtyping in D<: and demonstrates the
expressiveness of DOT by modeling a range of Scala constructs in it.

Keywords: Calculus · Dependent types · Scala

1 Introduction

While hiking together in the French alps in 2013, Martin Odersky tried to
explain to Phil Wadler why languages like Scala had foundations that were
not directly related via the Curry-Howard isomorphism to logic. This did not
go over well. As you would expect, Phil strongly disapproved. He argued that
anything that was useful should have a grounding in logic. In this paper, we try
to approach this goal.

We will develop a foundation for Scala from first principles. Scala is a func-
tional language that expresses central aspects of modules as first-class terms and
types. It identifies modules with objects and signatures with traits. For instance,
here is a trait Keys that defines an abstract type Key and a way to retrieve a
key from a string.

trait Keys {
type Key
def key(data: String): Key

}

A concrete implementation of Keys could be

object HashKeys extends Keys {
type Key = Int
def key(s: String) = s.hashCode

}

c© Springer International Publishing Switzerland 2016
S. Lindley et al. (Eds.): Wadler Festschrift, LNCS 9600, pp. 249–272, 2016.
DOI: 10.1007/978-3-319-30936-1 14

Dotty/Scala 3

• a Scala compiler based on DOT
• type safety unclear

• does support HK types

Scala Symposium, Oct 2016

Implementing Higher-Kinded Types in Dotty

Martin Odersky, Guillaume Martres, Dmitry Petrashko
EPFL, Switerland: {first.last}@epfl.ch

Abstract
dotty is a new, experimental Scala compiler based on DOT,
the calculus of Dependent Object Types. Higher-kinded
types are a natural extension of first-order lambda calculus,
and have been a core construct of Haskell and Scala. As long
as such types are just partial applications of generic classes,
they can be given a meaning in DOT relatively straightfor-
wardly. But general lambdas on the type level require ex-
tensions of the DOT calculus to be expressible. This paper
is an experience report where we describe and discuss four
implementation strategies that we have tried out in the last
three years. Each strategy was fully implemented in the dotty
compiler. We discuss the usability and expressive power of
each scheme, and give some indications about the amount of
implementation difficulties encountered.

Categories and Subject Descriptors D.3.3 [Language
Constructs and Features]: Polymorphism

General Terms Languages, Compilers, Experimentation

Keywords type constructor polymorphism, higher-kinded
types, higher-order genericity, Scala, dotty, DOT, dependent
object types

1. Introduction
Scala has first-class support for higher-kinded types [3], they
can be defined by users as follows:

type Foo[A] = List[A] // Foo has kind * -> *

and abstracted over:

def return[F[_], A](x: A): M[A]
type Bar[M[_]] = M[Int] // Bar has kind (* -> *) -> *

Implementing sound support for these higher-kinded
types in dotty [5] without restricting their expressive power

proved to be challenging, so much so that we evaluated four
different strategies before settling on the current direct rep-
resentation encoding. The strategies are summarized as fol-
lows:

• A simple encoding in the DOT-inspired [9] core type
structures that can express partial applications and not
much more

• A direct representation that adds support for full type
lambdas and higher-kinded applications, without re-
using much of the existing concepts of the calculus and
the compiler.

• A projection encoding, that encodes higher-kinded types
as first-order generic types using type projections T#A.

• A refinement encoding, that encodes higher-kinded types
as first-order generic types using refinements and path-
dependent types.

Neither of the encodings is fully transparent, in that some
type checking operations still needed special provisions for
encoded types.

These four strategies were implemented in the dotty re-
search compiler for Scala over the course of three years
(2013-2016). The purpose of the present paper is to give
a high-level overview of the implementations and the lan-
guage design choices they entail.

The perspective of the paper is experimental rather than
theoretical. One can regard it as a kind of lab notebook
describing and contrasting different experiments. The raw
data for the experiments exists in the form of commits in
the repository ‘lampepfl/dotty‘ on GitHub. Given the con-
siderable implementation effort that went into higher-kinded
types we wanted to create a record of what was done, what
worked out, and what did not work as well as hoped for.
Overall, it’s fair to say that there were more failed than suc-
cessful experiments, but failures are at least as important to
record as successes.

The rest of this paper is organized as follows. Section 3
describes the simple encoding of partial applications into
core DOT. Section 4 describes the direct representation of
higher kinded types. Section 5 and Section 6 describe two
encodings based on projections and refinements, respec-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

SCALA’16, October 30–31, 2016, Amsterdam, Netherlands
ACM. 978-1-4503-4648-1/16/10...$15.00
http://dx.doi.org/10.1145/2998392.2998400

51

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 2

DOT and Dotty

DOT

• a minimal core calculus for Scala
• proven type-safe (in Coq)
• does not support HK types

WadlerFest, April 2016

The Essence of Dependent Object Types

Nada Amin1, Samuel Grütter1, Martin Odersky1(B), Tiark Rompf2,
and Sandro Stucki1

1 EPFL, Lausanne, Switzerland
{nada.amin,samuel.grutter,martin.odersky,sandro.stucki}@epfl.ch

2 Purdue University, West Lafayette, USA
tiark@purdue.edu

Abstract. Focusing on path-dependent types, the paper develops foun-
dations for Scala from first principles. Starting from a simple calculus
D<: of dependent functions, it adds records, intersections and recursion
to arrive at DOT, a calculus for dependent object types. The paper shows
an encoding of System F with subtyping in D<: and demonstrates the
expressiveness of DOT by modeling a range of Scala constructs in it.

Keywords: Calculus · Dependent types · Scala

1 Introduction

While hiking together in the French alps in 2013, Martin Odersky tried to
explain to Phil Wadler why languages like Scala had foundations that were
not directly related via the Curry-Howard isomorphism to logic. This did not
go over well. As you would expect, Phil strongly disapproved. He argued that
anything that was useful should have a grounding in logic. In this paper, we try
to approach this goal.

We will develop a foundation for Scala from first principles. Scala is a func-
tional language that expresses central aspects of modules as first-class terms and
types. It identifies modules with objects and signatures with traits. For instance,
here is a trait Keys that defines an abstract type Key and a way to retrieve a
key from a string.

trait Keys {
type Key
def key(data: String): Key

}

A concrete implementation of Keys could be

object HashKeys extends Keys {
type Key = Int
def key(s: String) = s.hashCode

}

c© Springer International Publishing Switzerland 2016
S. Lindley et al. (Eds.): Wadler Festschrift, LNCS 9600, pp. 249–272, 2016.
DOI: 10.1007/978-3-319-30936-1 14

Dotty/Scala 3

• a Scala compiler based on DOT
• type safety unclear
• does support HK types

Scala Symposium, Oct 2016

Implementing Higher-Kinded Types in Dotty

Martin Odersky, Guillaume Martres, Dmitry Petrashko
EPFL, Switerland: {first.last}@epfl.ch

Abstract
dotty is a new, experimental Scala compiler based on DOT,
the calculus of Dependent Object Types. Higher-kinded
types are a natural extension of first-order lambda calculus,
and have been a core construct of Haskell and Scala. As long
as such types are just partial applications of generic classes,
they can be given a meaning in DOT relatively straightfor-
wardly. But general lambdas on the type level require ex-
tensions of the DOT calculus to be expressible. This paper
is an experience report where we describe and discuss four
implementation strategies that we have tried out in the last
three years. Each strategy was fully implemented in the dotty
compiler. We discuss the usability and expressive power of
each scheme, and give some indications about the amount of
implementation difficulties encountered.

Categories and Subject Descriptors D.3.3 [Language
Constructs and Features]: Polymorphism

General Terms Languages, Compilers, Experimentation

Keywords type constructor polymorphism, higher-kinded
types, higher-order genericity, Scala, dotty, DOT, dependent
object types

1. Introduction
Scala has first-class support for higher-kinded types [3], they
can be defined by users as follows:

type Foo[A] = List[A] // Foo has kind * -> *

and abstracted over:

def return[F[_], A](x: A): M[A]
type Bar[M[_]] = M[Int] // Bar has kind (* -> *) -> *

Implementing sound support for these higher-kinded
types in dotty [5] without restricting their expressive power

proved to be challenging, so much so that we evaluated four
different strategies before settling on the current direct rep-
resentation encoding. The strategies are summarized as fol-
lows:

• A simple encoding in the DOT-inspired [9] core type
structures that can express partial applications and not
much more

• A direct representation that adds support for full type
lambdas and higher-kinded applications, without re-
using much of the existing concepts of the calculus and
the compiler.

• A projection encoding, that encodes higher-kinded types
as first-order generic types using type projections T#A.

• A refinement encoding, that encodes higher-kinded types
as first-order generic types using refinements and path-
dependent types.

Neither of the encodings is fully transparent, in that some
type checking operations still needed special provisions for
encoded types.

These four strategies were implemented in the dotty re-
search compiler for Scala over the course of three years
(2013-2016). The purpose of the present paper is to give
a high-level overview of the implementations and the lan-
guage design choices they entail.

The perspective of the paper is experimental rather than
theoretical. One can regard it as a kind of lab notebook
describing and contrasting different experiments. The raw
data for the experiments exists in the form of commits in
the repository ‘lampepfl/dotty‘ on GitHub. Given the con-
siderable implementation effort that went into higher-kinded
types we wanted to create a record of what was done, what
worked out, and what did not work as well as hoped for.
Overall, it’s fair to say that there were more failed than suc-
cessful experiments, but failures are at least as important to
record as successes.

The rest of this paper is organized as follows. Section 3
describes the simple encoding of partial applications into
core DOT. Section 4 describes the direct representation of
higher kinded types. Section 5 and Section 6 describe two
encodings based on projections and refinements, respec-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

SCALA’16, October 30–31, 2016, Amsterdam, Netherlands
ACM. 978-1-4503-4648-1/16/10...$15.00
http://dx.doi.org/10.1145/2998392.2998400

51

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 2

HK Types – An Example

type Ordering[A] = (A, A) => Boolean

abstract class SortedView[A, B >: A](xs: List[A], ord: Ordering[B]) {

def foldLeft[C](z: C, op: (C, A) => C): C

def concat[C >: A <: B](ys: List[C]): SortedView[C, B]

// declarations of further operations such as ’map’, ’flatMap’, etc.

}

• Types can take parameters: i.e. we have type operators.
• Type parameters of methods can have bounds (as usual).
• Type parameters of operators can also have bounds!
• Type definitions can be used to introduce aliases.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 3

HK Types – An Example

type Ordering[A] = (A, A) => Boolean

abstract class SortedView[A, B >: A](xs: List[A], ord: Ordering[B]) {

def foldLeft[C](z: C, op: (C, A) => C): C

def concat[C >: A <: B](ys: List[C]): SortedView[C, B]

// declarations of further operations such as ’map’, ’flatMap’, etc.

}

• Types can take parameters: i.e. we have type operators.

• Type parameters of methods can have bounds (as usual).
• Type parameters of operators can also have bounds!
• Type definitions can be used to introduce aliases.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 3

HK Types – An Example

type Ordering[A] = (A, A) => Boolean

abstract class SortedView[A, B >: A](xs: List[A], ord: Ordering[B]) {

def foldLeft[C](z: C, op: (C, A) => C): C

def concat[C >: A <: B](ys: List[C]): SortedView[C, B]

// declarations of further operations such as ’map’, ’flatMap’, etc.

}

• Types can take parameters: i.e. we have type operators.
• Type parameters of methods can have bounds (as usual).

• Type parameters of operators can also have bounds!
• Type definitions can be used to introduce aliases.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 3

HK Types – An Example

type Ordering[A] = (A, A) => Boolean

abstract class SortedView[A, B >: A](xs: List[A], ord: Ordering[B]) {

def foldLeft[C](z: C, op: (C, A) => C): C

def concat[C >: A <: B](ys: List[C]): SortedView[C, B]

// declarations of further operations such as ’map’, ’flatMap’, etc.

}

• Types can take parameters: i.e. we have type operators.
• Type parameters of methods can have bounds (as usual).
• Type parameters of operators can also have bounds!

• Type definitions can be used to introduce aliases.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 3

HK Types – An Example

type Ordering[A] = (A, A) => Boolean

abstract class SortedView[A, B >: A](xs: List[A], ord: Ordering[B]) {

def foldLeft[C](z: C, op: (C, A) => C): C

def concat[C >: A <: B](ys: List[C]): SortedView[C, B]

// declarations of further operations such as ’map’, ’flatMap’, etc.

}

• Types can take parameters: i.e. we have type operators.
• Type parameters of methods can have bounds (as usual).
• Type parameters of operators can also have bounds!
• Type definitions can be used to introduce aliases.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 3

The Anatomy of a Type Interval

X >: A <: B

X : A ..B

Special cases

Upper bound X <: B X : ⊥ ..B
Lower bound X >: A X : A ..>
Abstract X X : ⊥ ..>
Alias X = A X : A ..A

• ⊥ = Nothing = minimal/bottom type;

• > = Any = maximal/top type;

• ⊥ ..> = ∗ = kind of all types.

• A ..A = singleton containing only A.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 4

The Anatomy of a Type Interval

X >: A <: B

X : A ..B

Intuition: X has bounds A <: X <: B.

Special cases

Upper bound X <: B X : ⊥ ..B
Lower bound X >: A X : A ..>
Abstract X X : ⊥ ..>
Alias X = A X : A ..A

• ⊥ = Nothing = minimal/bottom type;

• > = Any = maximal/top type;

• ⊥ ..> = ∗ = kind of all types.

• A ..A = singleton containing only A.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 4

The Anatomy of a Type Interval

X >: A <: B

X : A ..B

Intuition: X is an element of the set of types {A<: · · · <: B }

Special cases

Upper bound X <: B X : ⊥ ..B
Lower bound X >: A X : A ..>
Abstract X X : ⊥ ..>
Alias X = A X : A ..A

• ⊥ = Nothing = minimal/bottom type;

• > = Any = maximal/top type;

• ⊥ ..> = ∗ = kind of all types.

• A ..A = singleton containing only A.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 4

The Anatomy of a Type Interval

X >: A <: B

X : A ..B

Intuition: X is an element of the set of types {A<: · · · <: B } = A ..B

Special cases

Upper bound X <: B X : ⊥ ..B
Lower bound X >: A X : A ..>
Abstract X X : ⊥ ..>
Alias X = A X : A ..A

• ⊥ = Nothing = minimal/bottom type;

• > = Any = maximal/top type;

• ⊥ ..> = ∗ = kind of all types.

• A ..A = singleton containing only A.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 4

The Anatomy of a Type Interval

X >: A <: B X : A ..B

Intuition: X is an element of the set of types {A<: · · · <: B } = A ..B

Special cases

Upper bound X <: B X : ⊥ ..B
Lower bound X >: A X : A ..>
Abstract X X : ⊥ ..>
Alias X = A X : A ..A

• ⊥ = Nothing = minimal/bottom type;

• > = Any = maximal/top type;

• ⊥ ..> = ∗ = kind of all types.

• A ..A = singleton containing only A.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 4

The Anatomy of a Type Interval

X >: A <: B X : A ..B

Intuition: X is an element of the set of types {A<: · · · <: B } = A ..B

Special cases

Upper bound X <: B X : ⊥ ..B

Lower bound X >: A X : A ..>
Abstract X X : ⊥ ..>
Alias X = A X : A ..A

• ⊥ = Nothing = minimal/bottom type;

• > = Any = maximal/top type;

• ⊥ ..> = ∗ = kind of all types.

• A ..A = singleton containing only A.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 4

The Anatomy of a Type Interval

X >: A <: B X : A ..B

Intuition: X is an element of the set of types {A<: · · · <: B } = A ..B

Special cases

Upper bound X <: B X : ⊥ ..B
Lower bound X >: A X : A ..>

Abstract X X : ⊥ ..>
Alias X = A X : A ..A

• ⊥ = Nothing = minimal/bottom type;

• > = Any = maximal/top type;

• ⊥ ..> = ∗ = kind of all types.

• A ..A = singleton containing only A.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 4

The Anatomy of a Type Interval

X >: A <: B X : A ..B

Intuition: X is an element of the set of types {A<: · · · <: B } = A ..B

Special cases

Upper bound X <: B X : ⊥ ..B
Lower bound X >: A X : A ..>
Abstract X X : ⊥ ..>

Alias X = A X : A ..A

• ⊥ = Nothing = minimal/bottom type;

• > = Any = maximal/top type;

• ⊥ ..> = ∗ = kind of all types.

• A ..A = singleton containing only A.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 4

The Anatomy of a Type Interval

X >: A <: B X : A ..B

Intuition: X is an element of the set of types {A<: · · · <: B } = A ..B

Special cases

Upper bound X <: B X : ⊥ ..B
Lower bound X >: A X : A ..>
Abstract X X : ⊥ ..>
Alias X = A X : A ..A

• ⊥ = Nothing = minimal/bottom type;

• > = Any = maximal/top type;

• ⊥ ..> = ∗ = kind of all types.

• A ..A = singleton containing only A.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 4

The Anatomy of a Type Interval (cont.)

F[X >: A <: B] >: G <: H

F : (X:A ..B)→ G ..H

We can also represent bounded operators

Examples

Alias F1[X] = List[X] F1 : (X:∗)→ List X ..List X
Upper bound F2[X] <: List[X] F2 : (X:∗)→ ⊥ ..List X
HO bounded op. F3[X, Y[_ <: X]] F3 : (X:∗)→ (Y: (_:⊥ ..X)→ ∗)→ ∗

NB. The operators F1 − F3 all have dependent kinds.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 5

The Anatomy of a Type Interval (cont.)

F[X >: A <: B] >: G <: H F : (X:A ..B)→ G ..H

We can also represent bounded operators

Examples

Alias F1[X] = List[X] F1 : (X:∗)→ List X ..List X
Upper bound F2[X] <: List[X] F2 : (X:∗)→ ⊥ ..List X
HO bounded op. F3[X, Y[_ <: X]] F3 : (X:∗)→ (Y: (_:⊥ ..X)→ ∗)→ ∗

NB. The operators F1 − F3 all have dependent kinds.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 5

The Anatomy of a Type Interval (cont.)

F[X >: A <: B] >: G <: H F : (X:A ..B)→ G ..H

We can also represent bounded operators

Examples

Alias F1[X] = List[X] F1 : (X:∗)→ List X ..List X

Upper bound F2[X] <: List[X] F2 : (X:∗)→ ⊥ ..List X
HO bounded op. F3[X, Y[_ <: X]] F3 : (X:∗)→ (Y: (_:⊥ ..X)→ ∗)→ ∗

NB. The operators F1 − F3 all have dependent kinds.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 5

The Anatomy of a Type Interval (cont.)

F[X >: A <: B] >: G <: H F : (X:A ..B)→ G ..H

We can also represent bounded operators

Examples

Alias F1[X] = List[X] F1 : (X:∗)→ List X ..List X
Upper bound F2[X] <: List[X] F2 : (X:∗)→ ⊥ ..List X

HO bounded op. F3[X, Y[_ <: X]] F3 : (X:∗)→ (Y: (_:⊥ ..X)→ ∗)→ ∗

NB. The operators F1 − F3 all have dependent kinds.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 5

The Anatomy of a Type Interval (cont.)

F[X >: A <: B] >: G <: H F : (X:A ..B)→ G ..H

We can also represent bounded operators

Examples

Alias F1[X] = List[X] F1 : (X:∗)→ List X ..List X
Upper bound F2[X] <: List[X] F2 : (X:∗)→ ⊥ ..List X
HO bounded op. F3[X, Y[_ <: X]] F3 : (X:∗)→ (Y: (_:⊥ ..X)→ ∗)→ ∗

NB. The operators F1 − F3 all have dependent kinds.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 5

The Anatomy of a Type Interval (cont.)

F[X >: A <: B] >: G <: H F : (X:A ..B)→ G ..H

We can also represent bounded operators

Examples

Alias F1[X] = List[X] F1 : (X:∗)→ List X ..List X
Upper bound F2[X] <: List[X] F2 : (X:∗)→ ⊥ ..List X
HO bounded op. F3[X, Y[_ <: X]] F3 : (X:∗)→ (Y: (_:⊥ ..X)→ ∗)→ ∗

NB. The operators F1 − F3 all have dependent kinds.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 5

Proving Type Safety of Fω··

The big challenge is to prove subtyping inversion.

Γ ` A1 → B1 <: A2 → B2 : ∗
Γ ` A2 <: A1 : ∗ Γ ` B1 <: B2 : ∗

Γ ` ∀X:K1.A1 <: ∀X:K2.A2 : ∗
Γ ` K2 <: K1 Γ,X:K2 ` A1 <: A2 : ∗

Main sub-challenges:

1. Subtyping derivations may involve computation (βη-conversions).
2. Subtyping derivations may involve subsumption (via subkinding).
3. Type variables with inconsistent bounds can reflect arbitrary subtyping

assumptions into subtyping derivations.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 6

Proving Type Safety of Fω··

The big challenge is to prove subtyping inversion.

Γ ` A1 → B1 <: A2 → B2 : ∗
Γ ` A2 <: A1 : ∗ Γ ` B1 <: B2 : ∗

Γ ` ∀X:K1.A1 <: ∀X:K2.A2 : ∗
Γ ` K2 <: K1 Γ,X:K2 ` A1 <: A2 : ∗

Main sub-challenges:

1. Subtyping derivations may involve computation (βη-conversions).
2. Subtyping derivations may involve subsumption (via subkinding).
3. Type variables with inconsistent bounds can reflect arbitrary subtyping

assumptions into subtyping derivations.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 6

Proving Type Safety of Fω··

The big challenge is to prove subtyping inversion.

Γ ` A1 → B1 <: A2 → B2 : ∗
Γ ` A2 <: A1 : ∗ Γ ` B1 <: B2 : ∗

Γ ` ∀X:K1.A1 <: ∀X:K2.A2 : ∗
Γ ` K2 <: K1 Γ,X:K2 ` A1 <: A2 : ∗

Main sub-challenges:

1. Subtyping derivations may involve computation (βη-conversions).
2. Subtyping derivations may involve subsumption (via subkinding).
3. Type variables with inconsistent bounds can reflect arbitrary subtyping

assumptions into subtyping derivations.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 6

Proving Type Safety of Fω··

The big challenge is to prove subtyping inversion.

Γ ` A1 → B1 <: A2 → B2 : ∗
Γ ` A2 <: A1 : ∗ Γ ` B1 <: B2 : ∗

Γ ` ∀X:K1.A1 <: ∀X:K2.A2 : ∗
Γ ` K2 <: K1 Γ,X:K2 ` A1 <: A2 : ∗

Main sub-challenges:
1. Subtyping derivations may involve computation (βη-conversions).

2. Subtyping derivations may involve subsumption (via subkinding).
3. Type variables with inconsistent bounds can reflect arbitrary subtyping

assumptions into subtyping derivations.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 6

Proving Type Safety of Fω··

The big challenge is to prove subtyping inversion.

Γ ` A1 → B1 <: A2 → B2 : ∗
Γ ` A2 <: A1 : ∗ Γ ` B1 <: B2 : ∗

Γ ` ∀X:K1.A1 <: ∀X:K2.A2 : ∗
Γ ` K2 <: K1 Γ,X:K2 ` A1 <: A2 : ∗

Main sub-challenges:
1. Subtyping derivations may involve computation (βη-conversions).
2. Subtyping derivations may involve subsumption (via subkinding).

3. Type variables with inconsistent bounds can reflect arbitrary subtyping
assumptions into subtyping derivations.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 6

Proving Type Safety of Fω··

The big challenge is to prove subtyping inversion.

Γ ` A1 → B1 <: A2 → B2 : ∗
Γ ` A2 <: A1 : ∗ Γ ` B1 <: B2 : ∗

Γ ` ∀X:K1.A1 <: ∀X:K2.A2 : ∗
Γ ` K2 <: K1 Γ,X:K2 ` A1 <: A2 : ∗

Main sub-challenges:
1. Subtyping derivations may involve computation (βη-conversions).
2. Subtyping derivations may involve subsumption (via subkinding).
3. Type variables with inconsistent bounds can reflect arbitrary subtyping

assumptions into subtyping derivations.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 6

Proving Type Safety of Fω··

The big challenge is to prove subtyping inversion.

Γ ` A1 → B1 <: A2 → B2 : ∗
Γ ` A2 <: A1 : ∗ Γ ` B1 <: B2 : ∗

Γ ` ∀X:K1.A1 <: ∀X:K2.A2 : ∗
Γ ` K2 <: K1 Γ,X:K2 ` A1 <: A2 : ∗

Main sub-challenges:
1. Subtyping derivations may involve computation (βη-conversions).
2. Subtyping derivations may involve subsumption (via subkinding).
3. Type variables with inconsistent bounds can reflect arbitrary subtyping

assumptions into subtyping derivations.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 6

Challenge 1: Getting Rid of βη-Conversions

Problem: βη-conversions get in the way of inversion.

Γ ` A1 → A2 <: (λX:∗.X→ A2) A1 <: · · · <: (λX:∗.X→ B2) B1 <: B1 → B2 : ∗

Solution: normalize types and kinds – no redexes, no conversions!

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 7

Challenge 1: Getting Rid of βη-Conversions

Problem: βη-conversions get in the way of inversion.

Γ ` A1 → A2 <: (λX:∗.X→ A2) A1 <: · · · <: (λX:∗.X→ B2) B1 <: B1 → B2 : ∗

Solution: normalize types and kinds – no redexes, no conversions!

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 7

Challenge 1: Getting Rid of βη-Conversions

New problem: dependent kinding of applications involves substitutions.

Γ ` Z : (X: J)→ K Γ ` V : J
Γ ` Z V : K[V/X]

New solution: use hereditary substitution (introducing further problems. . .)

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 7

Challenge 1: Getting Rid of βη-Conversions

New problem: dependent kinding of applications involves substitutions.

Γ ` Z : (X: J)→ K Γ ` V : J
Γ ` Z V : K[V/X]

New solution: use hereditary substitution (introducing further problems. . .)

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 7

Challenge 1: Getting Rid of βη-Conversions

New problem: dependent kinding of applications involves substitutions.

Γ ` Z : (X: J)→ K Γ ` V : J
Γ ` Z V : K[V/X |J|]

New solution: use hereditary substitution

(introducing further problems. . .)

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 7

Challenge 1: Getting Rid of βη-Conversions

New problem: dependent kinding of applications involves substitutions.

Γ ` Z : (X: J)→ K Γ ` V : J
Γ ` Z V : K[V/X |J|]

New solution: use hereditary substitution (introducing further problems. . .)

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 7

Challenge 3: Inconsistent Bounds

Problem: Type variables can introduce arbitrary subtyping relationships.

X: > .. ⊥ ` A→ B <: > <: X <: ⊥ <: ∀Y:K.C : ∗

NB. This causes all sorts of problems:
• subject reduction (preservation) fails,
• subtyping becomes undecidable,
• . . .

Solution: invert <: only for closed types
– no variables, no inconsistencies!

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 8

Challenge 3: Inconsistent Bounds

Problem: Type variables can introduce inconsistent subtyping relationships.

X: > .. ⊥ ` A→ B <: > <: X <: ⊥ <: ∀Y:K.C : ∗

NB. This causes all sorts of problems:
• subject reduction (preservation) fails,
• subtyping becomes undecidable,
• . . .

Solution: invert <: only for closed types
– no variables, no inconsistencies!

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 8

Challenge 3: Inconsistent Bounds

Problem: Type variables can introduce inconsistent subtyping relationships.

X: > .. ⊥ `

A→ B <: > <:

X

<: ⊥ <: ∀Y:K.C

: ∗

NB. This causes all sorts of problems:
• subject reduction (preservation) fails,
• subtyping becomes undecidable,
• . . .

Solution: invert <: only for closed types
– no variables, no inconsistencies!

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 8

Challenge 3: Inconsistent Bounds

Problem: Type variables can introduce inconsistent subtyping relationships.

X: > .. ⊥ `

A→ B <:

> <: X

<: ⊥ <: ∀Y:K.C

: ∗

NB. This causes all sorts of problems:
• subject reduction (preservation) fails,
• subtyping becomes undecidable,
• . . .

Solution: invert <: only for closed types
– no variables, no inconsistencies!

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 8

Challenge 3: Inconsistent Bounds

Problem: Type variables can introduce inconsistent subtyping relationships.

X: > .. ⊥ ` A→ B <: > <: X

<: ⊥ <: ∀Y:K.C

: ∗

NB. This causes all sorts of problems:
• subject reduction (preservation) fails,
• subtyping becomes undecidable,
• . . .

Solution: invert <: only for closed types
– no variables, no inconsistencies!

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 8

Challenge 3: Inconsistent Bounds

Problem: Type variables can introduce inconsistent subtyping relationships.

X: > .. ⊥ ` A→ B <: > <: X <: ⊥

<: ∀Y:K.C

: ∗

NB. This causes all sorts of problems:
• subject reduction (preservation) fails,
• subtyping becomes undecidable,
• . . .

Solution: invert <: only for closed types
– no variables, no inconsistencies!

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 8

Challenge 3: Inconsistent Bounds

Problem: Type variables can introduce inconsistent subtyping relationships.

X: > .. ⊥ ` A→ B <: > <: X <: ⊥ <: ∀Y:K.C : ∗

NB. This causes all sorts of problems:
• subject reduction (preservation) fails,
• subtyping becomes undecidable,
• . . .

Solution: invert <: only for closed types
– no variables, no inconsistencies!

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 8

Challenge 3: Inconsistent Bounds

Problem: Type variables can introduce inconsistent subtyping relationships.

X: > .. ⊥ ` A→ B <: > <: X <: ⊥ <: ∀Y:K.C : ∗

NB. This causes all sorts of problems:
• subject reduction (preservation) fails,
• subtyping becomes undecidable,
• . . .

Solution: invert <: only for closed types
– no variables, no inconsistencies!

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 8

Challenge 3: Inconsistent Bounds

Problem: Type variables can introduce inconsistent subtyping relationships.

X: > .. ⊥ ` A→ B <: > <: X <: ⊥ <: ∀Y:K.C : ∗

NB. This causes all sorts of problems:
• subject reduction (preservation) fails,
• subtyping becomes undecidable,
• . . .

Solution: invert <: only for closed types
– no variables, no inconsistencies!

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 8

Inversion – Step by Step

declarative canonical transitivity-free

∅ `d A→ B<: A′ → B′ ∅ `c U→ V <: U′ → V′ `tf U→ V <: U′ → V′

∅ `d A′ = U′ <: U = A
∅ `d B = V <: V′ = B′

∅ `c U′ <: U
∅ `c V <: V′

`tf U′ <: U
`tf V <: V′

nf '

invert

nf sound '

• U = nf(A), V = nf(B), . . .
• nf sound: Γ ` A = nfΓ(A) for all Γ and A.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 9

Inversion – Step by Step

declarative canonical transitivity-free

∅ `d A→ B<: A′ → B′ ∅ `c U→ V <: U′ → V′ `tf U→ V <: U′ → V′

∅ `d A′ = U′ <: U = A
∅ `d B = V <: V′ = B′

∅ `c U′ <: U
∅ `c V <: V′

`tf U′ <: U
`tf V <: V′

nf '

invert

nf sound '

• U = nf(A), V = nf(B), . . .

• nf sound: Γ ` A = nfΓ(A) for all Γ and A.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 9

Inversion – Step by Step

declarative canonical transitivity-free

∅ `d A→ B<: A′ → B′ ∅ `c U→ V <: U′ → V′ `tf U→ V <: U′ → V′

∅ `d A′ = U′ <: U = A
∅ `d B = V <: V′ = B′

∅ `c U′ <: U
∅ `c V <: V′

`tf U′ <: U
`tf V <: V′

nf '

invert

nf sound '

• U = nf(A), V = nf(B), . . .

• nf sound: Γ ` A = nfΓ(A) for all Γ and A.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 9

Inversion – Step by Step

declarative canonical transitivity-free

∅ `d A→ B<: A′ → B′ ∅ `c U→ V <: U′ → V′ `tf U→ V <: U′ → V′

∅ `d A′ = U′ <: U = A
∅ `d B = V <: V′ = B′

∅ `c U′ <: U
∅ `c V <: V′

`tf U′ <: U
`tf V <: V′

nf '

invert

nf sound '

• U = nf(A), V = nf(B), . . .

• nf sound: Γ ` A = nfΓ(A) for all Γ and A.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 9

Inversion – Step by Step

declarative canonical transitivity-free

∅ `d A→ B<: A′ → B′ ∅ `c U→ V <: U′ → V′ `tf U→ V <: U′ → V′

∅ `d A′ = U′ <: U = A
∅ `d B = V <: V′ = B′

∅ `c U′ <: U
∅ `c V <: V′

`tf U′ <: U
`tf V <: V′

nf '

invert

nf sound '

• U = nf(A), V = nf(B), . . .

• nf sound: Γ ` A = nfΓ(A) for all Γ and A.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 9

Inversion – Step by Step

declarative canonical transitivity-free

∅ `d A→ B<: A′ → B′ ∅ `c U→ V <: U′ → V′ `tf U→ V <: U′ → V′

∅ `d A′ = U′ <: U = A
∅ `d B = V <: V′ = B′

∅ `c U′ <: U
∅ `c V <: V′

`tf U′ <: U
`tf V <: V′

nf '

invert

nf sound '

• U = nf(A), V = nf(B), . . .
• nf sound: Γ ` A = nfΓ(A) for all Γ and A.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 9

There’s More in the Paper. . .

• Recap of the Fω
<: family and high-level intro to Fω·· (with examples).

• Full presentation of Fω·· (syntax, typing, SOS, . . .).
• Undecidability of subtyping.

. . . and in the extended version (https://arxiv.org/abs/2107.01883) . . .
• Additional definitions and lemmas.
• Human-readable proofs for (most) results.

. . . and in the artifact (https://zenodo.org/record/5060213).
• Mechanization of the full metatheory!

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 10

https://arxiv.org/abs/2107.01883
https://zenodo.org/record/5060213

There’s More in the Paper. . .

• Recap of the Fω
<: family and high-level intro to Fω·· (with examples).

• Full presentation of Fω·· (syntax, typing, SOS, . . .).
• Undecidability of subtyping.

. . . and in the extended version (https://arxiv.org/abs/2107.01883) . . .
• Additional definitions and lemmas.
• Human-readable proofs for (most) results.

. . . and in the artifact (https://zenodo.org/record/5060213).
• Mechanization of the full metatheory!

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 10

https://arxiv.org/abs/2107.01883
https://zenodo.org/record/5060213

There’s More in the Paper. . .

• Recap of the Fω
<: family and high-level intro to Fω·· (with examples).

• Full presentation of Fω·· (syntax, typing, SOS, . . .).

• Undecidability of subtyping.

. . . and in the extended version (https://arxiv.org/abs/2107.01883) . . .
• Additional definitions and lemmas.
• Human-readable proofs for (most) results.

. . . and in the artifact (https://zenodo.org/record/5060213).
• Mechanization of the full metatheory!

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 10

https://arxiv.org/abs/2107.01883
https://zenodo.org/record/5060213

There’s More in the Paper. . .

• Recap of the Fω
<: family and high-level intro to Fω·· (with examples).

• Full presentation of Fω·· (syntax, typing, SOS, . . .).
• Undecidability of subtyping.

. . . and in the extended version (https://arxiv.org/abs/2107.01883) . . .
• Additional definitions and lemmas.
• Human-readable proofs for (most) results.

. . . and in the artifact (https://zenodo.org/record/5060213).
• Mechanization of the full metatheory!

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 10

https://arxiv.org/abs/2107.01883
https://zenodo.org/record/5060213

There’s More in the Paper. . .

• Recap of the Fω
<: family and high-level intro to Fω·· (with examples).

• Full presentation of Fω·· (syntax, typing, SOS, . . .).
• Undecidability of subtyping.

. . . and in the extended version (https://arxiv.org/abs/2107.01883) . . .
• Additional definitions and lemmas.

• Human-readable proofs for (most) results.

. . . and in the artifact (https://zenodo.org/record/5060213).
• Mechanization of the full metatheory!

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 10

https://arxiv.org/abs/2107.01883
https://zenodo.org/record/5060213

There’s More in the Paper. . .

• Recap of the Fω
<: family and high-level intro to Fω·· (with examples).

• Full presentation of Fω·· (syntax, typing, SOS, . . .).
• Undecidability of subtyping.

. . . and in the extended version (https://arxiv.org/abs/2107.01883) . . .
• Additional definitions and lemmas.
• Human-readable proofs for (most) results.

. . . and in the artifact (https://zenodo.org/record/5060213).
• Mechanization of the full metatheory!

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 10

https://arxiv.org/abs/2107.01883
https://zenodo.org/record/5060213

There’s More in the Paper. . .

• Recap of the Fω
<: family and high-level intro to Fω·· (with examples).

• Full presentation of Fω·· (syntax, typing, SOS, . . .).
• Undecidability of subtyping.

. . . and in the extended version (https://arxiv.org/abs/2107.01883) . . .
• Additional definitions and lemmas.
• Human-readable proofs for (most) results.

. . . and in the artifact (https://zenodo.org/record/5060213).
• Mechanization of the full metatheory!

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 10

https://arxiv.org/abs/2107.01883
https://zenodo.org/record/5060213

Thank you!

Coauthor
Paolo Giarrusso

Collaborators

• Guillaume Martres
• Nada Amin
• Martin Odersky
• Andreas Abel
• Jesper Cockx

Check out the Agda mechanization!

https://github.com/sstucki/f-omega-int-agda

https://zenodo.org/record/5060213

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 11

https://github.com/sstucki/f-omega-int-agda
https://zenodo.org/record/5060213

Except where otherwise noted, this work is licensed under

https://creativecommons.org/licenses/by/4.0/

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 11

https://creativecommons.org/licenses/by/4.0/

	Appendix

