A Theory of Higher-Order Subtyping with Type Intervals

Sandro Stucki Paolo G. Giarrusso

ICPF 2021 — 22-27 Aug 2021

sandros@chalmers.se @stuckintheory

' CHALMERS ¢® BEDROCK

UNIVERSITY OF v
UNIVERSITY OF TECHNOLOGY PPy Systems Inc.

sandros@chalmers.se
@stuckintheory

Declorative Suﬁtyp-'qg

Inconsistent

TYpe Sa{ety

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

DOT and Dotty

DOT

WadlerFest, April 2016

The Essence of Dependent Object Types

Nada Amin', Samuel Griitter!, Martin Odersky(), Tiark Rompf2,
and Sandro Stuckit

! EPFL, Lausanne, Switzerland
{nada.amin, samuel .grutter, martin.odersky, sandro.stucki}eepfl.ch
2 Purdue University, West Lafayette, USA
tiark@purdue.edu

Abstract. Focusing on path-dependent types, the paper develops foun-
dations for Scala from first principles. Starting from a simple calculus
De. of dependent functions, it adds records, intersections and recursion
to arrive at DOT, a calculus for dependent object types. The paper shows
an encoding of System F with subtyping in D... and demonstrates the
exoressiveness of DOT by modeling a ranee of Scala constructs in it

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

DOT and Dotty

DOT

e a minimal core calculus for Scala

WadlerFest, April 2016

The Essence of Dependent Object Types

Nada Amin', Samuel Griitter!, Martin Odersky(), Tiark Rompf2,

and Sandro Stucki!

! EPFL, Lausanne, Switzerland
{nada.amin, samuel .grutter, martin.odersky, sandro.stucki}eepfl.ch
2 Purdue University, West Lafayette, USA
tiark@purdue.edu

Abstract. Focusing on path-dependent types, the paper develops foun-
dations for Scala from first principles. Starting from a simple calculus
D-. of dependent functions, it adds records, intersections and recursion
to arrive at DOT, a calculus for dependent abject types. The paper shows
an encoding of System F with subtyping in D... and demonstrat
expressiveness of DOT by modeling a range of Seala constructs in it

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

DOT and Dotty

DOT

* a minimal core calculus for Scala
e proven type-safe (in Coq)

WadlerFest, April 2016

The Essence of Dependent Object Types

Nada Amin', Samuel Griitter!, Martin Odersky(), Tiark Rompf2,
and Sandro Stuckil

! EPFL, Lausanne, Switzerland
{nada.amin, samuel .grutter, martin.odersky, sandro.stucki}eepfl.ch
2 Purdue University, West Lafayette, USA
tiark@purdue.edu

Abstract. Focusing on path-dependent types, the paper develops foun-
dations for Scala from first principles. Starting from a simple calculus
D-. of dependent functions, it adds records, intersections and recursion
to arrive at DOT, a calculus for dependent abject types. The paper shows
an encoding of System F with subtyping in D, and demonstrates the
expressiveness of DOT by modeling a range of Seala constructs in it

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

DOT and Dotty

DOT

* a minimal core calculus for Scala
e proven type-safe (in Coq)
e does not support HK types

WadlerFest, April 2016

The Essence of Dependent Object Types

Nada Amin', Samuel Griitter!, Martin Odersky(), Tiark Rompf2,
and Sandro Stucki!

! EPFL, Lausanne, Switzerland
{nada.amin, samuel .grutter, martin.odersky, sandro.stucki}eepfl.ch
2 Purdue University, West Lafayette, USA
tiark@purdue.edu

Abstract. Focusing on path-dependent types, the paper develops foun-
dations for Scala from first principles. Starting from a simple calculus
D-. of dependent functions, it adds records, intersections and recursion
to arrive at DOT, a calculus for dependent object types. The paper s

an encoding of System F with subtyping in D, and demonst
expressiveness of DOT by modeling a range of Seala constructs in i

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

DOT and Dotty

DOT

* a minimal core calculus for Scala
e proven type-safe (in Coq)
e does not support HK types

Dotty/Scala 3

WadlerFest, April 2016

The Essence of Dependent Object Types

Nada Amin', Samuel Griitter!, Martin Odersky(), Tiark Rompf2,
and Sandro Stucki®

! EPFL, Lausanne, Switzerland
{nada.amin, samuel .grutter, martin.odersky, sandro.stucki}eepfl.ch
2 Purdue University, West Lafayette, USA
tiark@purdue.edu

Abstract. Focusing on path-dependent types, the paper develops foun-
dations for Scala from first principles. Starting from a simple calculus
De. of dependent functions, it adds records, intersections and recursion
toan

ve at DOT, a calculus for dependent object types. The paper shows
oding of System F with subtyping in D, and demonstra
expressiveness of DOT by modeling a range of Seala constructs in it

S. Stucki, P. G. Giarrusso

Scala Symposium, Oct 2016

Implementing Higher-Kinded Types in Dotty

Martin Odersky, Guillaume Martres, Dmitry Petrashko

EPFL, Switerland: {First last}oepfl.ch

Abstract
dony i a new, experimental Scala compiler based on DOT,
the calculus of Dependent Object Types. Higher-kinded
types are a natural extension of firs-order lambda calculus,
and have been a core construct of Haskell and Scala. As long.
s such types are just partial applications of generic classes,
they can be given a meaning in DOT relatively straghtfor
wardly. But general lambdas on the type level require cx
tensions of the DOT caleulus to be expressible. This paper
i experience report where we describe and discuss four
iplementation straegies that we have tried out i the last
three years. Each sratcgy was fully implemented inthe dotry
‘compiler. We discuss the usability and expressive po

A Theory of Higher-Order Subtyping with Type Intervals

proved to be challenging, so much so that we evaluated four
different strategies before settling on the current direct rep-
resentation encoding. The strategies are summarized as fol-
lows:

A simple encoding in the DOT:inspired [9] core type
structures that can express partial applications and not
much more

A direct representation that adds support for full type
lambdas and_higher-kinded applications, without re-
using much of the existing conceps of the calculus and
the compiler.

DOT and Dotty

DOT

* a minimal core calculus for Scala
e proven type-safe (in Coq)
e does not support HK types

Dotty/Scala 3

¢ a Scala compiler based on DOT

WadlerFest, April 2016

The Essence of Dependent Object Types

Nada Amin', Samuel Griitter!, Martin Odersky(), Tiark Rompf2,
and Sandro Stucki!

Scala Symposium, Oct 2016

Implementing Higher-Kinded Types in Dotty

Martin Odersky, Guillaume Martres, Dmitry Petrashko
EPFL, Switerland: {first.ast)depfl.ch

S. Stucki, P. G. Giarrusso

! EPFL, Lausanne, Switzerland
{nada.amin, samuel .grutter, martin.odersky, sandro.stucki}eepfl.ch
2 Purdue University, West Lafayette, USA
tiark@purdue.edu

Abstract. Focusing on path-dependent types, the paper develops foun-
dations for Scala from first principles. Starting from a simple calculus
D-. of dependent functions, it adds records, intersections and recursion
to arrive at DOT, a calculus for dependent abject types. The paper shows
an encoding of System F with subtyping in D, and demonstrates
expressiveness of DOT by modeling a range of Seala constructs in it

the

Abstract

dony i a new, experimental Scala compiler based on DOT,
the calculus of Dependent Object Types. Higher-kinded
types are a natural extension of firs-order lambda calculus,
e eem <o constuct ofHasel el Aslong
s such types are just partial applications of gen ses,
hey can he given a meaning m DOT relatively araightor.
wardly. But general lambdas on the type level require cx
tensions of the DOT caleulus to be expressible. This paper
is an experience report where we deseribe and discuss four
implementation strategies that we have tried out in the last
three years. Each strategy was fully implemented in the dorty
compiler. We discuss the usability and expressive power of

A Theory of Higher-Order Subtyping with Type Intervals

proved to be challenging, so much so that we evaluated four
different strategies before settling on the current direct rep-
resentation encoding. The strategies are summarized as fol-
lows:

A simple encoding in the DOT:inspired [9] core type
structures that can express partial applications and not
much more

A direct representation that adds support for full type
lambdas and_higher-kinded applications, without re-
using much of the existing conceps of the calculus and
the compiler.

DOT and Dotty

DOT

* a minimal core calculus for Scala
e proven type-safe (in Coq)
e does not support HK types

Dotty/Scala 3

¢ a Scala compiler based on DOT
e type safety unclear

WadlerFest, April 2016

The Essence of Dependent Object Types

Nada Amin', Samuel Griitter!, Martin Odersky(), Tiark Rompf2,
and Sandro Stucki!

! EPFL, Lausanne, Switzerland
{nada.amin, samuel .grutter, martin.odersky, sandro.stucki}eepfl.ch
2 Purdue University, West Lafayette, USA
tiark@purdue.edu

Abstract. Focusing on path-dependent types, the paper develops foun-
dations for Scala from first principles. Starting from a simple calculus
D-. of dependent functions, it adds records, intersections and recursion
to arrive at DOT, a calculus for dependent abject types. The paper shows
an encoding of System F with subtyping in D, and demonstrates the
expressiveness of DOT by modeling a range of S it

la constructs

Scala Symposium, Oct 2016

Implementing Higher-Kinded Types in Dotty

Martin Odersky, Guillaume Martres, Dmitry Petrashko
EPFL, Switerland: {first.ast)depfl.ch

Abstract proved to be challenging, so much so that we evaluated four
dotty is a new, experimentl Scala compiler based on DOT, ifferent strategies before seuling on the current direct rep-
the calculue of Dependent Object Types. Higher kinded Tescntation encoding. The strategies are summarized as fol-
types are a natural extension of frstorder lambda calculus, 1%
« A simple encoding in the DOT-nspired [9] core type
sructures that can express partal applications and not
much more

Lensions of the DOT el 10 be xpressible. This paper

A direct representation that adds support for full type
is an experience report where we deseribe and discuss four . - o

lambdas and_higher-kinded applications, without re-
using much of the existing conceps of the calculus and
the compiler.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

DOT and Dotty

DOT

* a minimal core calculus for Scala
e proven type-safe (in Coq)
e does not support HK types

Dotty/Scala 3

¢ a Scala compiler based on DOT
e type safety unclear
e does support HK types

WadlerFest, April 2016

The Essence of Dependent Object Types

Nada Amin', Samuel Griitter!, Martin Odersky(), Tiark Rompf2,
and Sandro Stucki!

! EPFL, Lausanne, Switzerland
{nada.amin, samuel .grutter, martin.odersky, sandro.stucki}eepfl.ch
2 Purdue University, West Lafayette, USA
tiark@purdue.edu

Abstract. Focusing on path-dependent types, the paper develops foun-
dations for Scala from first principles. Starting from a simple calculus
D-. of dependent functions, it adds records, intersections and recursion
to arrive at DOT, a calculus for dependent abject types. The paper shows
an encoding of System F with subtyping in D, and demonstrates the
expressiveness of DOT by modeling a range of S it

la constructs

Scala Symposium, Oct 2016

Implementing Higher-Kinded Types in Dotty

Martin Odersky, Guillaume Martres, Dmitry Petrashko
EPFL, Switerland: {first.ast)depfl.ch

Abstract proved o be challenging, so much so that we evaluated four
oty s 8 nw,experimental Sala compiler based on DOT, | diferent sitegis before stling on the curet it ep-
he el of Dependent Object Topes. Higher kinded TeSntation encoding, The sratcgies are summarized s fol-
types are a natural extension of first-order lambda calculus, 1OV
« A simple encoding in the DOT-inspired [9] core type
y o Structures that can express parial applications and not
wardl mbdas on the type level require e much more

Lensions of the DOT el 10 be xpressible. This paper

« A diret representation that adds support for fll type
we describe and discuss four ” o o

lambdas and_higher-kinded applications, without re-
using much of the existing conceps of the calculus and
the compiler.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Imervals

HK Types — An Example

type Ordering[A] = (A, A) => Boolean

abstract class SortedView[A, B >: A](xs: List[A], ord: Ordering[B]) {
def foldLeft[C](z: C, op: (C, A) =>C): C
def concat[C >: A <: B](ys: List[C]): SortedView[C, B]
// declarations of further operations such as 'map’, 'flatMap’, etc.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

HK Types — An Example

type Ordering[A] = (A, A) => Boolean
abstract class SortedView[A, B >: A](xs: List[A], ord: Ordering[B]) {
def foldLeft[C](z: C, op: (C, A) =>C(C): C

def concat[C >: A <: B](ys: List[C]): SortedView[C, B]
// declarations of further operations such as 'map’, 'flatMap’, etc.

¢ Types can take parameters: i.e. we have type operators.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

HK Types — An Example

type Ordering[A] = (A, A) => Boolean

abstract class SortedView[A, B >: A](xs: List[A], ord: Ordering[B]) {
def foldLeft[C](z: C, op: (C, A) =>C(C): C
def concat[C >: A <: B](ys: List[C]): SortedView[C, B]
// declarations of further operations such as 'map’, 'flatMap’, etc.

¢ Types can take parameters: i.e. we have type operators.
¢ Type parameters of methods can have bounds (as usual).

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

HK Types — An Example

type Ordering[A] = (A, A) => Boolean

abstract class SortedView[A, B >: A](xs: List[A], ord: Ordering[B]) {
def foldLeft[C](z: C, op: (C, A) =>C(C): C
def concat[C >: A <: B](ys: List[C]): SortedView[C, B]
// declarations of further operations such as 'map’, 'flatMap’, etc.

¢ Types can take parameters: i.e. we have type operators.
¢ Type parameters of methods can have bounds (as usual).
e Type parameters of operators can also have bounds!

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

HK Types — An Example

type Ordering[A] = (A, A) => Boolean

abstract class SortedView[A, B >: A](xs: List[A], ord: Ordering[B]) {
def foldLeft[C](z: C, op: (C, A) =>(C): C
def concat[C >: A <: B](ys: List[C]): SortedView[C, B]

Types can take parameters: i.e. we have type operators.
¢ Type parameters of methods can have bounds (as usual).
e Type parameters of operators can also have bounds!
Type definitions can be used to introduce aliases.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

The Anatomy of a Type Interval

X>: A<: B

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

The Anatomy of a Type Interval

X>: A<: B

Intuition: X has bounds A <: X <: B.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

The Anatomy of a Type Interval

X>: A<: B

Intuition: X is an element of the set of types { A <: --- <:B}

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

The Anatomy of a Type Interval

X>: A<: B

Intuition: X is an element of the set of types {A<: --- <:B}=A..B

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

The Anatomy of a Type Interval

X>: A<: B X:A..B

Intuition: X is an element of the set of types {A<: --- <:B}=A..B

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

The Anatomy of a Type Interval

X>: A<: B X:A..B

Intuition: X is an element of the set of types {A<: --- <:B}=A..B

Special cases

Upper bound X <: B X:1..B

e | = Nothing = minimal/bottom type;

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

The Anatomy of a Type Interval

X>: A<: B X:A..B

Intuition: X is an element of the set of types {A<: --- <:B}=A..B

Special cases

Upper bound X <: B X:1..B
Lower bound X > A X:A..T

e | = Nothing = minimal/bottom type;

e T = Any = maximal/top type;

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

The Anatomy of a Type Interval

X>: A<: B X:A..B

Intuition: X is an element of the set of types {A<: --- <:B}=A..B
Special cases

Upper bound X <: B X:1..B
Lower bound X >: A X:A..T
Abstract X X:L1L..T

¢ | = Nothing = minimal/bottom type; e | .. T =« =kind of all types.

e T = Any = maximal/top type;

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

The Anatomy of a Type Interval

X>: A<: B X:A..B

Intuition: X is an element of the set of types {A<: --- <:B}=A..B
Special cases

Upper bound X <: B X:1..B
Lower bound X >: A X:A.T
Abstract X X:1..T
Alias X=A X:A.A
¢ | = Nothing = minimal/bottom type; e | .. T =« =kind of all types.
e T = Any = maximal/top type; e A..A = singleton containing only A.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

The Anatomy of a Type Interval (cont.)

FIX >: A <: B] >: G<: H

We can also represent bounded operators

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

The Anatomy of a Type Interval (cont.)

F[IX >: A<: B] >: G<: H F:(X:A..B)-G..H

We can also represent bounded operators

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

The Anatomy of a Type Interval (cont.)

F[IX >: A<: B] >: G<: H F:(X:A..B)-G..H

We can also represent bounded operators

Examples

Alias F1[X] = List[X] Fp: (X:%) — List X ..ListX

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

The Anatomy of a Type Interval (cont.)

F[IX >: A<: B] >: G<: H F:(X:A..B)-G..H

We can also represent bounded operators

Examples

Alias F1[X] = List[X] Fp: (X:%) — List X ..ListX
Upper bound F2[X] <: List[X] Fp: (X:x) — L. ListX

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

The Anatomy of a Type Interval (cont.)

F[IX >: A<: B] >: G<: H F:(X:A..B)-G..H

We can also represent bounded operators

Examples

Alias F1[X] = List[X] Fp: (X:%) — List X ..ListX
Upper bound F2[X] <: List[X] Fp: (X:x) — L. ListX
HO bounded op. F3[X, Y[_ <: X]] Fz:(X:x) = (Yi(L:L..X) = %) — %

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

The Anatomy of a Type Interval (cont.)

F[IX >: A<: B] >: G<: H F:(X:A..B)-G..H

We can also represent bounded operators

Examples

Alias F1[X] = List[X] Fp: (X:%) — List X ..ListX
Upper bound F2[X] <: List[X] Fp: (X:x) — L. ListX
HO bounded op. F3[X, Y[_ <: X]] Fz:(X:x) = (Yi(L:L..X) = %) — %

NB. The operators F; — F3 all have dependent kinds.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

Proving Type Safety of F¥

Declarative Suﬂtyr"ag

Inconsistent

TYpe Safew:y

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

Proving Type Safety of F¥

The big challenge is to prove subtyping inversion.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

Proving Type Safety of F¥

The big challenge is to prove subtyping inversion.

I'FA; - B1<:Ay — By : % I'FVX:Ki. A1 <:VX:Kp. Ay @ x

' Ay <:Aq:% ' By <:By:x 'K, <:Kq F,X:K2|—A1<2A2:*

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

Proving Type Safety of F¥

The big challenge is to prove subtyping inversion.

T+ Ay — By <:Ay — By @ % T VX:Ky. Ay <:VX:Kp. Ay : %

Ay <:Ap:x I'-By<:By:x I'FKy<: Ky I'X:K Al <:Ap: %

Main sub-challenges:
1. Subtyping derivations may involve computation (5n-conversions).

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

Proving Type Safety of F¥

The big challenge is to prove subtyping inversion.

I'FA; - B1<:Ay — By : % I'FVX:Ki. A1 <:VX:Kp. Ay @ x

Ay <:Ap:x I'-By<:By:x I'FKy<: Ky I'X:K Al <:Ap: %
Main sub-challenges:

1. Subtyping derivations may involve computation (5n-conversions).
2. Subtyping derivations may involve subsumption (via subkinding).

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

Proving Type Safety of F¥

The big challenge is to prove subtyping inversion.

I'FA; - B1<:Ay — By : % I'FVX:Ki. A1 <:VX:Kp. Ay @ x

Ay <:Ap:x I'-By<:By:x 'Ky, <:Kq I'X:K Al <:Ap: %

Main sub-challenges:
1. Subtyping derivations may involve computation (5n-conversions).
2. Subtyping derivations may involve subsumption (via subkinding).

3. Type variables with inconsistent bounds can reflect arbitrary subtyping
assumptions into subtyping derivations.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

Proving Type Safety of F¥

The big challenge is to prove subtyping inversion.

I'FA; - B1<:Ay — By : % I'FVX:Ki. A1 <:VX:Kp. Ay @ x

Ay <:Ap:x I'-By<:By:x I'FKy<: Ky I'X:K Al <:Ap: %

Main sub-challenges:
1. Subtyping derivations may involve computation (5n-conversions).
2.

3. Type variables with inconsistent bounds can reflect arbitrary subtyping
assumptions into subtyping derivations.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

Challenge 1: Getting Rid of gn-Conversions

Problem: gn-conversions get in the way of inversion.

' A — Ay < (AX:*.X—)Az)Al <i-ee <o (AX:*.X—)Bz)Bl <: By — By : %

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

Challenge 1: Getting Rid of gn-Conversions

Problem: gn-conversions get in the way of inversion.
' - A — A < (AX:*.X—)Az)Al < -eee <o (AX*X—) Bz)Bl <: B — B :

Solution: normalize types and kinds — no redexes, no conversions!

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

Challenge 1: Getting Rid of gn-Conversions

New problem: dependent kinding of applications involves substitutions.

THFZ:(X:)=>K TFrV:J
T'-ZV:K[V/X]

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

Challenge 1: Getting Rid of gn-Conversions

New problem: dependent kinding of applications involves substitutions.

THFZ:(X:)=>K TFrV:J
THZV:K[V/X]

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

Challenge 1: Getting Rid of gn-Conversions

New problem: dependent kinding of applications involves substitutions.

I'-Z:(X:J))»K TFV:J
T'+2ZV:K[V/X

New solution: use hereditary substitution

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

Challenge 1: Getting Rid of gn-Conversions

New problem: dependent kinding of applications involves substitutions.

I'-Z:(X:J))»K TFV:J
T'-2ZV:K[V/X

New solution: use hereditary substitution (introducing further problems. . .)

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

Challenge 3: Inconsistent Bounds

Problem: Type variables can introduce arbitrary subtyping relationships.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

Challenge 3: Inconsistent Bounds

Problem: Type variables can introduce inconsistent subtyping relationships.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

Challenge 3: Inconsistent Bounds

Problem: Type variables can introduce inconsistent subtyping relationships.

X:T..1L F X DX

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

Challenge 3: Inconsistent Bounds

Problem: Type variables can introduce inconsistent subtyping relationships.

X:T..1L F T <: X DX

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

Challenge 3: Inconsistent Bounds

Problem: Type variables can introduce inconsistent subtyping relationships.

X:T.1L FA-B<T<:X Dok

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

Challenge 3: Inconsistent Bounds

Problem: Type variables can introduce inconsistent subtyping relationships.

X:T.1L FA—-B<:T<:X<: 1L Dok

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

Challenge 3: Inconsistent Bounds

Problem: Type variables can introduce inconsistent subtyping relationships.

X:T.L FA—->B<:T<:X<: 1L <:VY:KC: %

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

Challenge 3: Inconsistent Bounds

Problem: Type variables can introduce inconsistent subtyping relationships.

X: T.1L FA—-B < T <: X <: 1L <:VY:K.C: %

NB. This causes all sorts of problems:
¢ subject reduction (preservation) fails,
® subtyping becomes undecidable,

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

Challenge 3: Inconsistent Bounds

Problem: Type variables can introduce inconsistent subtyping relationships.

X: T.1L FA—-B < T <: X <: 1L <:VY:K.C: %

NB. This causes all sorts of problems:
¢ subject reduction (preservation) fails,

® subtyping becomes undecidable,
. - ..

Solution: invert <: only for closed types
— no variables, no inconsistencies!

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

Inversion — Step by Step

declarative

FrF4A—B<:A — B

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

Inversion — Step by Step

declarative canonical

FrF4A—B<:A — B Lf» .U V<U -V

o U=nf(A), V=ni(B), ...

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

Inversion — Step by Step

declarative canonical transitivity-free

FrF4A—B<:A — B Lf» gF.U—-V< U=V =, FeU—> V< U =V

o U=nf(A), V=ni(B), ...

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

Inversion — Step by Step

declarative canonical transitivity-free
FrF4A—B<:A — B Lf» gF.U—-V< U=V =, FeU—> V< U =V
linvert
l_'[f U’ < U
e Vo<V

o U=nf(A), V=ni(B), ...

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

Inversion — Step by Step

declarative canonical transitivity-free
FrF4A—B<:A — B Lf» gF.U—-V< U=V =, FeU—> V< U =V
linvert
g U <:U Fe U <: U
SV <V ~ e Vo<V

o U=nf(A), V=ni(B), ...

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

Inversion — Step by Step

declarative canonical transitivity-free
FrF4A—B<:A — B Lf» gF.U—-V< U=V = FeU—> V< U =V
i linvert
\4
GHA =U <:U=A o U < U e U <: U
@y B=V <V =B nfsound @,V <V’ =~ Fe V <V

e U=nf(A), V=nf(B), ...
e nfsound: I' - A = nfp(A) for all " and A.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

S. Stucki, P. G. Giarrusso

There’s More in the Paper...

A Theory of Higher-Order Subtyping with Type Intervals

https://arxiv.org/abs/2107.01883
https://zenodo.org/record/5060213

There’s More in the Paper. ..

* Recap of the F¥. family and high-level intro to F (with examples).

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

https://arxiv.org/abs/2107.01883
https://zenodo.org/record/5060213

There’s More in the Paper. ..

* Recap of the F¥. family and high-level intro to F (with examples).
e Full presentation of F¥ (syntax, typing, SOS, ...).

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

https://arxiv.org/abs/2107.01883
https://zenodo.org/record/5060213

There’s More in the Paper. ..

* Recap of the F¥. family and high-level intro to F (with examples).
e Full presentation of F¥ (syntax, typing, SOS, ...).
¢ Undecidability of subtyping.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

https://arxiv.org/abs/2107.01883
https://zenodo.org/record/5060213

There’s More in the Paper. ..

* Recap of the F¥. family and high-level intro to F (with examples).

e Full presentation of F¥ (syntax, typing, SOS, ...).
¢ Undecidability of subtyping.

...and in the extended version (https://arxiv.org/abs/2107.01883) ...

e Additional definitions and lemmas.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

https://arxiv.org/abs/2107.01883
https://zenodo.org/record/5060213

There’s More in the Paper. ..

* Recap of the F¥. family and high-level intro to F (with examples).

e Full presentation of F¥ (syntax, typing, SOS, ...).
¢ Undecidability of subtyping.

...and in the extended version (https://arxiv.org/abs/2107.01883) ...

e Additional definitions and lemmas.
e Human-readable proofs for (most) results.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

https://arxiv.org/abs/2107.01883
https://zenodo.org/record/5060213

There’s More in the Paper. ..

* Recap of the F¥. family and high-level intro to F (with examples).

e Full presentation of F¥ (syntax, typing, SOS, ...).
¢ Undecidability of subtyping.

...and in the extended version (https://arxiv.org/abs/2107.01883) ...

e Additional definitions and lemmas.
e Human-readable proofs for (most) results.

...and in the artifact (https://zenodo.org/record/5060213).
¢ Mechanization of the full metatheory!

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

https://arxiv.org/abs/2107.01883
https://zenodo.org/record/5060213

Thank you!

Coauthor Collaborators
Paolo Giarrusso « Guillaume Martres CHALMERS | =~
UNIVERSITY OF TECHNOLOGY
° Nada Amln GOTHENBURG
e Martin Odersky €® BEDROCK
e Andreas Abel v Systems Inc.

Jesper Cockx E PF L ! Sca Ia

Check out the Agda mechanization!

https://github.com/sstucki/f-omega-int-agda
https://zenodo.org/record/5060213

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals 11

https://github.com/sstucki/f-omega-int-agda
https://zenodo.org/record/5060213

Except where otherwise noted, this work is licensed under

https://creativecommons.org/licenses/by/4.0/

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals

https://creativecommons.org/licenses/by/4.0/

	Appendix

