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Abstract. Focusing on path-dependent types, the paper develops foun-
dations for Scala from first principles. Starting from a simple calculus
De. of dependent functions, it adds records, intersections and recursion
to arrive at DOT, a calculus for dependent object types. The paper shows
an encoding of System F with subtyping in D... and demonstrates the
exoressiveness of DOT by modeling a ranee of Scala constructs in it
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Abstract
dony i a new, experimental Scala compiler based on DOT,
the calculus of Dependent Object Types. Higher-kinded
types are a natural extension of firs-order lambda calculus,
and have been a core construct of Haskell and Scala. As long.
s such types are just partial applications of generic classes,
they can be given a meaning in DOT relatively straghtfor
wardly. But general lambdas on the type level require cx
tensions of the DOT caleulus to be expressible. This paper
i experience report where we describe and discuss four
iplementation straegies that we have tried out i the last
three years. Each sratcgy was fully implemented inthe dotry
‘compiler. We discuss the usability and expressive po
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proved to be challenging, so much so that we evaluated four
different strategies before settling on the current direct rep-
resentation encoding. The strategies are summarized as fol-
lows:

A simple encoding in the DOT:inspired [9] core type
structures that can express partial applications and not
much more

A direct representation that adds support for full type
lambdas and_higher-kinded applications, without re-
using much of the existing conceps of the calculus and
the compiler.
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HK Types — An Example

type Ordering[A] = (A, A) => Boolean

abstract class SortedView[A, B >: A](xs: List[A], ord: Ordering[B]) {
def foldLeft[C](z: C, op: (C, A) =>C): C
def concat[C >: A <: B](ys: List[C]): SortedView[C, B]
// declarations of further operations such as 'map’, 'flatMap’, etc.
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HK Types — An Example

type Ordering[A] = (A, A) => Boolean

abstract class SortedView[A, B >: A](xs: List[A], ord: Ordering[B]) {
def foldLeft[C](z: C, op: (C, A) =>(C): C
def concat[C >: A <: B](ys: List[C]): SortedView[C, B]

Types can take parameters: i.e. we have type operators.
¢ Type parameters of methods can have bounds (as usual).
e Type parameters of operators can also have bounds!
Type definitions can be used to introduce aliases.
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The Anatomy of a Type Interval

X>: A<: B

Intuition: X has bounds A <: X <: B.
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The Anatomy of a Type Interval

X>: A<: B X:A..B

Intuition: X is an element of the set of types {A<: --- <:B}=A..B
Special cases

Upper bound X <: B X:1..B
Lower bound X >: A X:A..T
Abstract X X:L1L..T

¢ | = Nothing = minimal/bottom type; e | .. T =« =kind of all types.

e T = Any = maximal/top type;
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The Anatomy of a Type Interval

X>: A<: B X:A..B

Intuition: X is an element of the set of types {A<: --- <:B}=A..B
Special cases

Upper bound X <: B X:1..B
Lower bound X >: A X:A.T
Abstract X X:1..T
Alias X=A X:A.A
¢ | = Nothing = minimal/bottom type; e | .. T =« =kind of all types.
e T = Any = maximal/top type; e A..A = singleton containing only A.
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The Anatomy of a Type Interval (cont.)

FIX >: A <: B] >: G<: H

We can also represent bounded operators
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The Anatomy of a Type Interval (cont.)

F[IX >: A<: B] >: G<: H F:(X:A..B)-G..H

We can also represent bounded operators
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F[IX >: A<: B] >: G<: H F:(X:A..B)-G..H

We can also represent bounded operators

Examples

Alias F1[X] = List[X] Fp: (X:%) — List X ..ListX
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F[IX >: A<: B] >: G<: H F:(X:A..B)-G..H

We can also represent bounded operators

Examples

Alias F1[X] = List[X] Fp: (X:%) — List X ..ListX
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The Anatomy of a Type Interval (cont.)

F[IX >: A<: B] >: G<: H F:(X:A..B)-G..H

We can also represent bounded operators

Examples

Alias F1[X] = List[X] Fp: (X:%) — List X ..ListX
Upper bound F2[X] <: List[X] Fp: (X:x) — L. ListX
HO bounded op. F3[X, Y[_ <: X]] Fz:(X:x) = (Yi(L:L..X) = %) — %
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The Anatomy of a Type Interval (cont.)

F[IX >: A<: B] >: G<: H F:(X:A..B)-G..H

We can also represent bounded operators

Examples

Alias F1[X] = List[X] Fp: (X:%) — List X ..ListX
Upper bound F2[X] <: List[X] Fp: (X:x) — L. ListX
HO bounded op. F3[X, Y[_ <: X]] Fz:(X:x) = (Yi(L:L..X) = %) — %

NB. The operators F; — F3 all have dependent kinds.
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The big challenge is to prove subtyping inversion.

I'FA; - B1<:Ay — By : % I'FVX:Ki. A1 <:VX:Kp. Ay @ x

' Ay <:Aq:% ' By <:By:x 'K, <:Kq F,X:K2|—A1<2A2:*
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Proving Type Safety of F¥

The big challenge is to prove subtyping inversion.

T+ Ay — By <:Ay — By @ % T VX:Ky. Ay <:VX:Kp. Ay : %

Ay <:Ap:x I'-By<:By:x I'FKy<: Ky I'X:K Al <:Ap: %

Main sub-challenges:
1. Subtyping derivations may involve computation (5n-conversions).
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Challenge 1: Getting Rid of gn-Conversions

Problem: gn-conversions get in the way of inversion.

' A — Ay < (AX:*.X—)Az)Al <i-ee <o (AX:*.X—)Bz)Bl <: By — By : %
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Challenge 1: Getting Rid of gn-Conversions

Problem: gn-conversions get in the way of inversion.
' - A — A < (AX:*.X—)Az)Al < -eee <o (AX*X—) Bz)Bl <: B — B :

Solution: normalize types and kinds — no redexes, no conversions!

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals



Challenge 1: Getting Rid of gn-Conversions

New problem: dependent kinding of applications involves substitutions.

THFZ:(X:)=>K TFrV:J
T'-ZV:K[V/X]
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New problem: dependent kinding of applications involves substitutions.

I'-Z:(X:J))»K TFV:J
T'+2ZV:K[V/X

New solution: use hereditary substitution
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Challenge 1: Getting Rid of gn-Conversions

New problem: dependent kinding of applications involves substitutions.

I'-Z:(X:J))»K TFV:J
T'-2ZV:K[V/X

New solution: use hereditary substitution (introducing further problems. . .)
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Challenge 3: Inconsistent Bounds

Problem: Type variables can introduce arbitrary subtyping relationships.
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Challenge 3: Inconsistent Bounds

Problem: Type variables can introduce inconsistent subtyping relationships.

X:T.L FA—->B<:T<:X<: 1L <:VY:KC: %
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Challenge 3: Inconsistent Bounds

Problem: Type variables can introduce inconsistent subtyping relationships.

X: T.1L FA—-B < T <: X <: 1L <:VY:K.C: %

NB. This causes all sorts of problems:
¢ subject reduction (preservation) fails,
® subtyping becomes undecidable,
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Challenge 3: Inconsistent Bounds

Problem: Type variables can introduce inconsistent subtyping relationships.

X: T.1L FA—-B < T <: X <: 1L <:VY:K.C: %

NB. This causes all sorts of problems:
¢ subject reduction (preservation) fails,

® subtyping becomes undecidable,
. - ..

Solution: invert <: only for closed types
— no variables, no inconsistencies!
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Inversion — Step by Step

declarative

FrF4A—B<:A — B
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Inversion — Step by Step

declarative canonical

FrF4A—B<:A — B Lf» .U V<U -V

o U=nf(A), V=ni(B), ...
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Inversion — Step by Step

declarative canonical transitivity-free

FrF4A—B<:A — B Lf» gF.U—-V< U=V =, FeU—> V< U =V

o U=nf(A), V=ni(B), ...
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Inversion — Step by Step

declarative canonical transitivity-free
FrF4A—B<:A — B Lf» gF.U—-V< U=V =, FeU—> V< U =V
linvert
l_'[f U’ < U
e Vo<V

o U=nf(A), V=ni(B), ...
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Inversion — Step by Step

declarative canonical transitivity-free
FrF4A—B<:A — B Lf» gF.U—-V< U=V =, FeU—> V< U =V
linvert
g U <:U Fe U <: U
SV <V ~ e Vo<V

o U=nf(A), V=ni(B), ...
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Inversion — Step by Step

declarative canonical transitivity-free
FrF4A—B<:A — B Lf» gF.U—-V< U=V = FeU—> V< U =V
i linvert
\4
GHA =U <:U=A o U < U e U <: U
@y B=V <V =B nfsound @,V <V’ =~ Fe V <V

e U=nf(A), V=nf(B), ...
e nfsound: I' - A = nfp(A) for all " and A.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals



S. Stucki, P. G. Giarrusso

There’s More in the Paper...

A Theory of Higher-Order Subtyping with Type Intervals


https://arxiv.org/abs/2107.01883
https://zenodo.org/record/5060213

There’s More in the Paper. ..

* Recap of the F¥. family and high-level intro to F (with examples).

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals


https://arxiv.org/abs/2107.01883
https://zenodo.org/record/5060213

There’s More in the Paper. ..

* Recap of the F¥. family and high-level intro to F (with examples).
e Full presentation of F¥ (syntax, typing, SOS, ...).

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals


https://arxiv.org/abs/2107.01883
https://zenodo.org/record/5060213

There’s More in the Paper. ..

* Recap of the F¥. family and high-level intro to F (with examples).
e Full presentation of F¥ (syntax, typing, SOS, ...).
¢ Undecidability of subtyping.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals


https://arxiv.org/abs/2107.01883
https://zenodo.org/record/5060213

There’s More in the Paper. ..

* Recap of the F¥. family and high-level intro to F (with examples).

e Full presentation of F¥ (syntax, typing, SOS, ...).
¢ Undecidability of subtyping.

...and in the extended version (https://arxiv.org/abs/2107.01883) ...

e Additional definitions and lemmas.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals


https://arxiv.org/abs/2107.01883
https://zenodo.org/record/5060213

There’s More in the Paper. ..

* Recap of the F¥. family and high-level intro to F (with examples).

e Full presentation of F¥ (syntax, typing, SOS, ...).
¢ Undecidability of subtyping.

...and in the extended version (https://arxiv.org/abs/2107.01883) ...

e Additional definitions and lemmas.
e Human-readable proofs for (most) results.

S. Stucki, P. G. Giarrusso A Theory of Higher-Order Subtyping with Type Intervals


https://arxiv.org/abs/2107.01883
https://zenodo.org/record/5060213

There’s More in the Paper. ..

* Recap of the F¥. family and high-level intro to F (with examples).

e Full presentation of F¥ (syntax, typing, SOS, ...).
¢ Undecidability of subtyping.

...and in the extended version (https://arxiv.org/abs/2107.01883) ...

e Additional definitions and lemmas.
e Human-readable proofs for (most) results.

...and in the artifact (https://zenodo.org/record/5060213).
¢ Mechanization of the full metatheory!
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Thank you!
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Check out the Agda mechanization!

https://github.com/sstucki/f-omega-int-agda
https://zenodo.org/record/5060213
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