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Why use programming or modeling languages?
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Why?

Why use programming or modeling languages?

Syntax
• formal, standardized knowledge representation,
• shareable,
• executable.

Formal semantics
• precise mathematical meaning of programs/models,
• enables formal reasoning.

Tooling
• execution, simulation,
• translation, transformation, reduction,
• analysis, verification.
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How?
Formal modeling languages – my wish list:

• Simple yet expressive syntax/formalism.
• Formal semantics.
• Automation and tooling for manipulating models.

Example: Chemical Reaction Networks (CRNs)

2A + K 
 B + K kon, koff

B ⇀ ∅ kdeg
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Chemical Reaction Networks (CRNs)

2A + K 
 B + K kon, koff

B ⇀ ∅ kdeg

Syntax
• many formats, graphical textual, etc.
• for example, SBML http://sbml.org/.

Formal semantics
• stochastic: Markov processes (CTMC),
• differential: rate equations (ODEs),
• others (e.g. Boolean).

Lots of tooling! (See e.g. http://sbml.org/SBML_Software_Guide)

• stochastic simulation (Monte Carlo/Gillespie),
• numerical integration,
• analysis, verification, . . .
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CRNs as a stochastic process

1. Pick a reaction α at random (weighted by kα ×#matches).
2. Pink a match in the current state M at random.
3. Update M according to α to obtain a future state M′.
4. Advance time (Poisson process).
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Rate equations (continuous semantics)

• A system of ordinary differential equations (ODEs).
• State space is a vector of concentrations/densities.
• Derivatives are proportional to production/consumption of

molecules by rules (mass action).
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2A + K 
 B + K kon, koff

B ⇀ ∅ kdeg

d
dt [A] = 2koff [B][K] − 1

2
kon[A]2[K]

d
dt [B] =

1
2

kon[A]2[K]− 2koff [B][K]− kdeg[B]

7 / 25



Rate equations (continuous semantics)

• A system of ordinary differential equations (ODEs).
• State space is a vector of concentrations/densities.
• Derivatives are proportional to production/consumption of

molecules by rules (mass action).

d
dt [A] = 2koff [B][K] − 1

2
kon[A]2[K]

d
dt [B] =

1
2

kon[A]2[K]− 2koff [B][K]− kdeg[B]

• The REs approximate the behavior of the CTMC semantics
in the limit of large molecule counts (abstraction).

• Can solved by numerical integration (more efficient than
stochastic simulation for large systems).
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The challenge

Combinatorial Explosion

MAPK pathway, diagram by Kosigrim (Wikipedia), 2007.
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Biochemical reaction networks
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Maps for the early EGF model, Figure 5, [Danos et al., 2010].

Biochemical reaction networks can suffer from high
combinatorial complexity:

• Molecules interact through domains.
• A single chemical species may display multiple domains.
• The number of species exhibits a combinatorial explosion

w.r.t. the number of domain interactions.
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Biochemical reaction networks

A + B 
 AB kA, k′A
A + BC 
 ABC kA, k′A
B + C 
 BC kC, k′C

AB + C 
 ABC kC, k′C

Biochemical reaction networks can suffer from high
combinatorial complexity:

• Molecules interact through domains.
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Polymers

Worst case: polymerization reactions involve an infinite number
of species/reactions.

A + A 
 AA kA, k′A
AA + A 
 AAA kA, k′A

AAA + A 
 AAAA kA, k′A
...

10 / 25



Rule-Based Models (RBMs)
Rule-based modeling languages such as Kappa and BNGL1

have been introduced to deal with this combinatorial complexity.
• Rules describe interaction on the domain level.
• A single rule captures a (possibly infinite) set of reactions.

A B 
 A B kA, k′A

A B C 
 A B C kA, k′A

B C 
 B C kC, k′C

A B C 
 A B C kC, k′C

p x y p x y

p x y q p x y q

x y q x y q

p x y q p x y q

1See e.g. [Danos et al., 2007] and [Blinov et al., 2004]
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Rule-Based Models (RBMs)
Rule-based modeling languages such as Kappa and BNGL1

have been introduced to deal with this combinatorial complexity.
• Rules describe interaction on the domain level.
• A single rule captures a (possibly infinite) set of reactions.

A B 
 A B kA, k′A

B C 
 B C kC, k′C

p x p x

y q y q

A(p),B(x) 
 A(p1),B(x1) kA, k′A
B(y),C(q) 
 B(y2),C(q2) kC, k′C

1See e.g. [Danos et al., 2007] and [Blinov et al., 2004]
11 / 25



Polymers (cont.)

Polymerization reactions can be expressed compactly.

A A 
 A A kA, k′Ax y x y

12 / 25



Polymers (cont.)

Polymerization reactions can be expressed compactly.
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 A A kA, k′Ax y x y
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 A(x1),A(y1) kA, k′A
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RBMs as a stochastic process

1. Pick a rule α at random (weighted by kα ×#matches).
2. Pink a match in the current state G at random.
3. Update G according to α to obtain a future state G′.
4. Advance time (Poisson process).
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Tooling – Kappa

K
a

S
p m

i
pa

https://kappalanguage.org/
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Rate equations for rule-based models

Stochastic simulation of RBMs is easy (using a variant of
Gillespie/Monte Carlo method [Danos et al., 2007]).

Finding rate equations for RBMs is more tricky. . .

Problem: to find the rate equations of a rule-based model we
need to refine it into its ground reactions, possibly at the cost of
a combinatorial explosion.

d
dt [A] = k′A([AB] + [ABC]) − kA[A]([B] + [BC])
d
dt [C] = k′C([BC] + [ABC]) − kC[C]([B] + [AB])
d
dt [B] = k′A[AB] + k′C[BC] − [B](kA[A] + kC[C])

d
dt [AB] = kA[A][B] + k′C[BC] − [AB](k′A + kC[C])
d
dt [BC] = kC[B][C] + k′A[ABC] − [BC](k′C + kA[A])

d
dt [ABC] = kA[A][BC] + kC[AB][C]− [ABC](k′A + k′C)
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Abstracting rate equations

If we allow ourselves to write ODEs over a suitable set of
sub-species, we can reduce the system of rate equations:

d
dt [A] = k′A([AB] + [ABC]) − kA[A]([B] + [BC])
. . . . . .

d
dt [A] = d

dt [B?] = k′A[AB?] − kA[A][B?]
d
dt [AB?] = kA[A][B?] − k′A[AB?]

[B?] = [B] + [BC]
[AB?] = [AB] + [ABC]

6 ODEs

3 ODEs

B? = Bx and AB? = A Bp x are called fragments
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Automated model reduction
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Maps for the early EGF model, Figure 5, [Danos et al., 2010].

Automated extraction of fragments using model analysis:
• reduction of rate equations [Danos et al., 2010],
• reduction of CTMCs [Feret et al., 2012].

Case study [Feret et al., 2012]:
• Model of EGFR/Insulin receptor cross talk.
• Reduction of 2768 molecular species to 609 fragments.
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Self assembly

What if we want to study the self-assembly of biochemical
complexes, such as molecular machines or signaling
complexes?
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A
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A simple Kappa model (agents)
Let’s try to write a simple Kappa model for assembling our
example complex. We need

• a single type of agent with four sites (representing
monomers), and

• three types of links (representing the weak bonds among
monomers).
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Contact graph
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A simple Kappa model (rules)
To assemble bigger and bigger parts of our drum out of a pool
of individual agents and smaller parts, we use

• three atomic association rules, and
• three atomic dissociation rules.

A A A A

A A A A

A A A A

A

Contact graph
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The problem
• Kappa has no notion of space or geometry.
• Our model describes the self-assembly of other structures

too (differently sized rings, tubules, etc.)

A A
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GeEK – Adding geometry

u
ρ(u)

~s(u, a)

v

ρ(v)

~s(v, b)

~ω(u, a, v, b)

Let’s add three-dimensional geometry to our site graphs:
• agents may have radii,
• sites may have positions (w.r.t. their agents),
• each link may have an orientations (constraining the

orientations of the bound agents).
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A better model

Our simple model extended with geometry:
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Case study – self assembly of simple rings
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A simple model inspired by [Deeds et al., 2012].
• Homomeric three-membered rings self-assemble from

monomers with uniform affinities between biding sites.
• The concentration of rings experiences a plateau.
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Thank you!
Collaborators

• Vincent Danos, ENS Paris & CNRS
• Tobias Heindel, U.H. Manoa
• Ricardo Honorato-Zimmer, UoE
• Jean Krivine, Paris Diderot & CNRS
• Jérôme Feret, ENS & INRIA Paris
• Russ Harmer, ENS Lyon & CNRS
• Walter Fontana, HMS
• Pierre Boutillier, HMS

More resources
Kappa https://kappalanguage.org/

GeEK https://github.com/sstucki/lms-kappa/
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Additional slides

Modeling more general networks
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Modeling more general networks
Example: a birth process tracking ancestry.

kbirth−−−⇀

• Dynamics are given by graph rewrite rules.
• Observables are tracked through graph patterns.

Example: siblings

. . .

Genealogy
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Graph rewriting as a stochastic process

1. Pick a rule α at random (weighted by kα ×#matches).
2. Pink a match in the current state G at random.
3. Update G according to α to obtain a future state G′.
4. Advance time (Poisson process).

α

f f ′
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Stochastic graph rewriting

• State space is a graph-like structure.
• Transitions induced by graph rewrite rules.
• Rates are proportional to number of LHS matches (still

mass action).

Stochastic simulation using variants of Gillespie/Monte Carlo is
still possible but potentially inefficient (sub-graph isomorphism).
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Rate equations for graph-like systems

Problems:
• No more contact map!
• What is a species, a ground refinement?
• Does it even make sense to talk about densities?

The notion of a fragment still makes sense if we switch to a
more algebraic construction [Danos et al., 2015].

Bonus: the more general approach allows us to also derive
ODEs for higher-order moments (variance, skew, etc.)!
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Example: two-legged DNA walker

How fast are two-legged walkers moving along a DNA
strand? [Stukalin et al., 2005]

G1

kF,E

kB,C
G2

kF,C

kB,E
G3

The combined mean velocity is given by

V = 1
2(kF,E Ep([G1]) + kF,C Ep([G2])

−kB,E Ep([G3])− kB,C Ep([G2]))
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Two-legged DNA walker (cont.)

The initial system of ODEs

d
dt

= kF,E −kB,C −kF,C +kB,E

d
dt

= −kF,E +kB,C +kF,C − . . .

d
dt

= kF,E −kB,C −kF,C + . . .

d
dt

= −kF,E +kB,C +kF,C − . . .

d
dt

= . . .

The system appears to be infinite, we need to truncate or
simplify.
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Two-legged DNA walker (cont.)

Approximation: assume infinite/circular DNA strands.

[G1] = = = = [G3]

The infinite expansion reduces to a finite system of ODEs:

d
dt

= kF,E −kB,C −kF,C +kB,E

d
dt

= −kF,E +kB,C +kF,C −kB,E
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Example: preferential attachment

Two rules: birth and preferential attachment.2

k0−−⇀
k1−−⇀

Example observables: cells, parent-child relations, siblings.

N = E = S =

2Example from [Danos et al., 2015]
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Preferential attachment (cont.)

Mean evolution of the observables.

d
dt E(S) = 2(k0 + k1)E(E) + 2k1 E(S)
d
dt E(N) = k0 E(N) + k1 E(E)
d
dt E(E) = k0 E(N) + k1 E(E)

N = E = S =
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Preferential attachment (cont.)

A more interesting class of observables: degree-limited
subgraphs.

• Nk: count single nodes with exactly k neighbors (not
matched).

• [Sk]: counts “stars”, i.e. a hub node surrounded by k
neighbors (matched).
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Preferential attachment (cont.)

A more interesting class of observables: degree-limited
subgraphs.

• Nk: count single nodes with exactly k neighbors (not
matched).

• [Sk]: counts “stars”, i.e. a hub node surrounded by k
neighbors (matched).

d
dt E(Ni) = (k0 + k1(i − 1))E(Ni−1)− (k0 + k1i)E(Ni) for i ≥ 1
d
dt E(N0) = k0 E(N) + k1 E(E)− k0 E(N0)
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Fraction of edges and indegree-3 vertices

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

E(S3)/E(N)
E(E)/E(N)

k0 = 0.2, k1 = 0.6
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Higher-order moments

Vp(Ni) = Ep
(
(Ni − Ep(Ni))

2) = Ep
(
(Ni)

2)− Ep(Ni)
2.

• 11 fragments to express [S3]
2,

• a total of 2097 equations to track E([S3]
3),

• approx. half a minute to generate the equations,
• approx. 33 minutes to solve them using GNU/Octave.3

Tools needed. . .
http://github.com/sstucki/pa-ode-gen/ generator for PA
http://github.com/rhz/graph-rewriting/ generic tool
http://rhz.github.io/fragger/ Java Script demo

3On a Intel Core i7 CPU.
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